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Preface

This thesis introduces the Weibull-Markov model as an alternative to the
widely used homogenous Markov model. Such alternatives are likely to
meet a lot of scepticism. This is understandable, because the homogenous
Markov models are rooted in complex stochastic theory and have been used
to great success in all areas of reliability calculations for a long time. To even
think of developing a serious alternative in the course of a PhD project, and
then even to do this as an electrical engineer, must seem to be at least naive.

Yet, the work presented here is not believed to be in vain. Although it took
some time to get the mathematical equations in a form that seems to be
bearable for real mathematicians, the principle idea behind them survived
through the process of testing, checking and implementation. This gives
good hope for the future of the Weibull-Markov model.

This Licenciate Thesis would not have been made possible without the con-
structive cooperation between the Chalmers University in Sweden and the
DIgSILENT company in Germany.

Göteborg, Sweden, 27.02.2001,
Jasper van Casteren





Abstract

This Licenciate Thesis introduces an alternative stochastic model for per-
forming reliability assessment calculations in electric power systems. This
new model has been developed because the commonly used “homogenous
Markov” model cannot be used to calculate cost parameters accurately. Yet,
the current market developments lead to an increasing demand for cost-
oriented reliability assessment.

The proposed alternative model, which was given the name “Weibull-Markov
Model”, has been implemented and used in a commercial reliability assess-
ment program with success. The use of the new model has proven not to
cause any relevant slowing down of the calculation process, and yet to de-
liver reliability cost indices at the same time. Additional reliability calculations
for cost calculations therefore are felt not to be required anymore.

A very important quality of the Weibull-Markov model is that it is 100% back-
wards compatible with the homogenous Markov model. This means that the
reliability data that has been gathered to great costs and effort in the past,
can still be used in the new calculations. The Weibull-Markov model pro-
vides for a so-called shape parameter with wich an existing homogenous
Markov model can be adjusted to bring it closer to the measured data with-
out actually changing the original data.

More research however will be needed to test the Weibull-Markov model
further for its merits and limits.
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Chapter 1

Power System Reliability
Assessment

The assessment of the reliability of a power system means the calculation of
a set of performance indicators. An example of such an indicator is the av-
erage number of times per year that a certain load point cannot be supplied
with electrical energy. Basically, there are two distinct sets of indicators: lo-
cal indicators and system indicators. Local indicators are calculated for a
specific point in the system. Examples are

• The average time per year during which a generator is not able to feed
into the network

• The average duration of the interruptions at a busbar.

• The average interruption costs per year for a specific load.

System indicators express the overall system performance. Examples are

• The average amount of energy per year that cannot be delivered to the
loads.

• the average number of interruptions per year, per customer.

• The average yearly interruption costs.

Power system reliability analysis is principally the analysis of a large set of
unwanted system states which may occur in the future. The results of all

1



Power System Reliability Assessment

these system state analyses is then used to calculate the various perfor-
mance indicators. The basic diagram of the calculation procedure is de-
picted in Fig. 1.1. This diagram shows the healthy operational state of the
system, in which all components behave properly. The reliability assess-
ment creates events that will bring the system in an unhealthy state, which
is then analyzed. When this analysis shows that the system is not longer
able to meet all its demands, a set of intermediate results is send to a result
analyzer. This is repeated for all relevant unhealthy system states. Finally,
the result analyzer will post-process the gathered results in order to calcu-
late the various performance indicators.

healthy operational state

events

Failure Effect Analysis

result analyser

results

Figure 1.1: Basic reliability assessment scheme

The reliability assessment process thus starts with the creation of relevant
system events. This must be done in such a way as to make it possible to
weight the results of the failure effect analysis. Not every event is equally
likely to happen, and the more likely events will have a greater impact on the
performance indices than the less likely ones. Creating weighted events is
made possible by the use of stochastic component models. These models
are combined in system models and are used to create system states in spe-
cific orders and to calculate the frequency and probability of the occurrence
of these system states.

This licenciate thesis introduces the basic methodologies for creating and
using stochastic models, and will introduce the wide-spread and commonly

2
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used homogenous Markov model and the alternative Weibull-Markov model.
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Chapter 2

Stochastic models

In order to calculate reliability performance indicators, the analyzed power
system has to be represented by stochastic models first. An electrical power
system is regarded as a collection of components. Each component is a typ-
ical part of the electric power system which is treated as one single object in
the reliability analysis. Examples are a specific load, a line, a generator, etc.,
but also a complete transformer bay with differential protection, breakers,
separators and grounding switches may be treated as a single component
in a reliability assessment.

A component may exhibit different ’component states’, such as ’being avail-
able’, ’being repaired’, etc. In the example of a transformer, the following
states could be distinguished:

1. the transformer performs to its requirements

2. the transformer does not meet all its requirements

3. the transformer is available, but not used

4. the transformer is in maintenance

5. the transformer is in repair

6. the transformer is being replaced by another transformer

7. the transformer behaves in such a way as to trigger its differential relay

4



Stochastic models

For some reliability calculations, all these possible states may have to be
accounted for. Normally, a reduction is made to two or three states. A two
state model would, for instance, only distinguish between

1. the transformer is available

2. the transformer is not available

A three state model could further distinguish between repairs (“forced out-
ages”) and maintenance (“planned outages”), or between different levels of
availability. Each of these states is described by

• an electrical model with electrical and operational constraints

• a duration distribution

• the possible transitions to the other states

The electric model for a transformer which is not available would be an infi-
nite impedance, for instance. A model for a transformer which is only partly
available would have a stuck tap changer, for instance, or would have a re-
duced capacity.

A stochastic component is a component with two or more states which have
a random duration and for which the next state is selected randomly from
the possible next states. A stochastic component changes abruptly from
one state to another at unforeseen moments in time. If we would monitor
such a stochastic component over a long period of time, while recognizing
four distinct states – ��� � ��� � ��� and ��� –, a graph as depicted in Fig. 2.1 could
be the result.
Because the behavior is stochastic, another graph will appear even if we
would monitor an absolute exact copy of the component under exactly the
same conditions.

For all stochastic models, only the state duration and the next state are
stochastic quantities. Each distinct functional state of a component is there-
fore regarded as being completely deterministic, apart from its duration.
Phenomena like randomly fluctuating impedances or random harmonic dis-
tortions are therefore not part of the stochastic behaviour of a component.

5



Stochastic models

Tn

Xn

x0

x1

x2

x3

t0 t1 t2 t3 t4 t5

Figure 2.1: Example of monitored states of a component

If such phenomena are to be included in a reliability assessment, to assess
the number of interruptions due to excessive harmonic distortion for exam-
ple, the stochastic model must be extended by a number of states for which
the fluctuating random quantity is considered constant.

This chapter introduces the stochastic models for electrical power system
components. From these stochastic models, the model for a stochastic
power system are then developed.

2.1 Stochastic Models

The basic quantity in reliability engineering is the duration � for which a
component stays in the same state. This duration is a stochastic quantity,
as its precise value is unknown. The word “precise” is emphasized here, as,
although we don’t know the value of a stochastic quantity, we almost always
know something about the possible values it could have. The time until the
next unplanned trip of a generator, for example, is unknown, but nobody
would expect a good generator to trip every day, as well as nobody would
expect it to operate for 10 years continuously without tripping even once.
This example range from 1 day to 10 years is too wide to be of practical
use in a reliability assessment. However, for actual generators, a much
smaller range of expected values can be justified by using measured data.
The basic question about a stochastic quantity is thus about the range of its
expected values, or ‘outcomes’: which outcomes can be expected and with
what probability?

6



Stochastic models

Both the outcome range and the outcome probabilities can be described by
a single function; the “Cumulative Density Function” or CDF. This function
is written as

� � ����� and defines the probability of � being smaller than � ,
which is written as:

� ������ ' DEA � ��� ��� (2.1)

for reliability purposes, the probability for a negative duration is zero and the
probability that the duration will be smaller than infinity is one:

� ���� � ' � (2.2)� � ��� � ' �
(2.3)

The “Probability Density Function”, or PDF, for � , � ������ , is the derivative
of the cumulative density function. The PDF gives a first insight into the
possible values for � , and the likelihood of it taking a value in a certain
range.

� � ����� ' 		 � � � ����� (2.4)

� ������ ' 
�������� �
DEA ��� � ��� ����� ���� � (2.5)���

�
� � ����� 	 � ' ��� � (2.6)

The survival function (SF), � � ����� , is defined as the probability that the du-
ration � will be longer than � .

� ������ ' DEA � ��� ��� '��! "� ������ (2.7)

For a specific component, i.e. a transformer, where � is the life time, which
is also known as the time to failure (TTF), the survival function gives the
probability for the component functioning for at least a certain amount of
time without failures. For a large group of similar components, the SF is
the expected fraction of components that will ‘survive’ up to a certain time
without failures.
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The hazard rate function (HRF),
� � ����� , is defined as the probability density

for a component to fail, for a certain time � , given the fact that the component
is still functioning at � ,

� � ����� ' 
�������� �
DEA ��� � ��� � ��� ��� � � ���� � ' � � ������ � ����� (2.8)

The HRF is an estimate of the unreliability of the components that are still
functioning without failures after a certain amount of time. An increasing
HRF signals a decreasing reliability. An increasing HRF means that the
probability of failure in the next period of time will increase with age. A
decreasing HRF could, for instance, occur when only the better components
survive.

The expected value of a function � of a stochastic quantity � is defined as

� � � � � ��� '
���
�
� ����� � � ����� 	 � (2.9)

The expected value of D itself is its mean
� � , which is defined as

� � '�� � � � '
���
�

� � � ����� 	 � (2.10)

The k’th central moment,
� �� , is defined as� �� '�� ��� �  �� � � �
	 � � (2.11)

The variance
	 � is defined as the second central moment	 � ' � �� '�� ��� �  �� � � �
	 � � '�� � � � �  � � � � ��� � (2.12)

The standard variance 
 � is defined as the square of the variance

 � '�� 	 � (2.13)

The remainder CDF is defined as the CDF of the remaining duration after an
inspection moment � . Because the total duration � is a stochastic quantity,
the remainder �  � is also stochastic. The remainder CDF,

� ����=����� , is
defined as

� � ���=����� ' DEA � ��� �� ��� ��� ' DEA ��� � ��� ���DEA ��� � � �
' � ������  "� ������

� � ����� (2.14)
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2.1.1 The Exponential Distribution

The negative exponential distribution is defined by

� � ����� ' + ����� � (2.15)

which makes that

� � ����� ' �! ����� � (2.16)
� � ����� ' +

(2.17)
� � ' �

+ (2.18)

	 � ' �
+ � (2.19)

The HRF of the negative exponential distribution,
� � ����� , is not dependent of

time which considerably simplifies many reliability calculations.

The remainder CDF,
��� ���=����� , for the negative exponential distribution equals

� � ���=����� '��! ������� � � �
	 ' � � ���  ��� (2.20)

The remainder of an exponential distributed duration thus has the same dis-
tribution as the total duration. The expected value, variance, etc. for the
remainder thus equal those of the total duration, independent of the inspec-
tion time. This is a peculiarity unique to the negative exponential distribution.
It also shows that the negative exponential distribution is a very abstract dis-
tribution. If, for instance, a repair duration would be negative exponentially
distributed, then the expected time to finish the repair would be independent
of the time already spend repairing. Such a type of repair is hard to imagine.
An example of a duration that is negative exponentially distributed is the time
it takes to throw 9 sixes with 9 dice, with a throw about every 3 seconds. In
this way, a throw of 9 sixes will occur about once a year, on average, but
the expected time until the next 9 sixes will always be about 1 year as the
probability of 9 sixes in the next throw is independent of the number of trials
done so far.

9
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2.1.2 The Weibull distribution

Where the exponential distribution uses only one parameter (
+
), the Weibull

PDF uses a shape factor
;

and a scale factor : . It is defined as

� � ����� ' ;
: � � � � ���������  
	 � :�� �� (2.21)

which makes that

� � ����� ' �! �������  	 � : � �� (2.22)

� ������ ' ;
: � � � � � (2.23)

� � ' :�� 	 � � �
; � (2.24)

	 � ' : ��� � 	 � ���; �  �� � 	 � � �
; ��� ��� (2.25)

where� � � � ' ���
�

��� � � ��� � 	 �
is the normal gamma function.

The Weibull PDF equals the negative exponential distribution when the shape
parameter

; '���� � . The gamma function which is needed for calculating the
expected value and variance can be evaluated without much computational
effort by standard numerical methods. Some examples of the Weibull PDF,
for different means and variance are displayed in in Fig. 2.2 and Fig. 2.3.
The conditional CDF,

� � ���=����� , for the Weibull distribution equals

� � ���=����� ' ����� � 	 �: � �  	 � : � �  (2.26)

which is dependent on the inspection time � .
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Figure 2.2: Some Weibull PDFs for different mean values

2.1.3 Weibull Probability Charts

The Weibull survival function can easily be transformed into straight lines.
The transformation is made by taking the double logarithm of the reciprocal
of the survival function


:9 � �
� � ����� � ' 	 � :�� � (2.27)


:9 � 
:9 � �
� � ����� ��� ' ; 
:9 �����  ; 
:9 � : � (2.28)

from which it is clear that a plot of

:9 �  
:9 � � ���������� against


:9 ����� will pro-
duce straight lines. Because the transformation is independent of the shape
and scale parameters, it is possible to draw plotting paper where the verti-
cal axis is logarithmic and corresponds to the survival time � , and the hor-
izontal axis is transformed to correspond with


:9 �  
:9 � �  � ���������� . Such
“Weibull-probability charts” are a helpful tool in estimating shape and scale
parameters without the risk of producing completely unrealistic parameters
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Figure 2.3: Some Weibull PDFs for different variance values

for measurements which do not fit a single Weibull distribution. Such unre-
alistic parameters would be produced without further warning by numerical
parameter estimation algorithms.

2.1.4 Lifetime, Repair and Failure Density

In many reliability textbooks, a distinction is made between repairable and
non-repairable components. While in many systems the latter are of great
importance, non-repairable components do not exist in electric power sys-
tems or are of no importance. Electric power systems are not build to per-
form once or twice, but to perform continuously, 24 hours a day, 365 days
per year. Therefore, there is no such thing as a ‘mission time’ for electric
power systems, nor for their components.

However, in speaking of a repair of a power system component, an abstract
definition of the word ‘repair’ is used. What actually is meant by repairable
components is that the functionality of those components can always be
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restored, even when this means that the physical hardware (the appliance)
is completely replaced.

A repair can restore the component to a condition as if it was brand new
again. Repair by replacement is the trivial example. Such a perfect repair
is called a repair-as-good-as-new. If the repair restores the component to
about the same condition in which it was directly before the failure, it is called
a repair-as-bad-as-old. Normally, repairs in between maintenance, which
are often performed under great time pressure, are repairs-as-bad-as-old.
Maintenance is normally considered to be a repair-as-good-as-new.

Components will normally start their life ready for use, i.e. with available
functionality, and as-good-as-new. This is called their ‘NEW’ state. As soon
as they are taken into service they will age and they will no longer be in their
‘NEW’ state. However, as long as they perform to expectation they are said
to be in their ‘UP’ state. A component may fail at some time after it has been
taken into service. This time is called the Time To Failure or TTF.

Ideal Maintenance

Non-repairable components will function until they fail. After that, their life is
over. Although an electrical power system will never exhibit non-repairable
components, their behaviour is of theoretical interest.

The life-time of non-repairable components may be prolonged by preven-
tive maintenance. A preventive maintenance restores the component to the
state ‘as good as new’, if it was still functioning. If we schedule maintenance
at fixed intervals

% � , we can calculate the new PDF for the time to failure for
the maintained component.

The probability density for the period until the first maintenance, � � ����� , has
the same shape as the original PDF because maintenance has not changed
anything yet:

� � ����� '
� � � ����� if � � � � % �� � � � ����� )�7 � (2.29)

Note the fact that � � ����� is strictly speaking not a PDF, because it only de-
scribes the distribution in the first period and � �� � � ����� 	 � will therefore be

13
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smaller than one.

The probability of surviving until � ' % � is � � � % � � . This is also the probabil-
ity of the component to fail at � � % � if the maintenance would not have been
performed. When the duration of the maintenance is neglected here, which
is acceptable because it will normally be much smaller than

% � , then this
remaining probability is distributed over all moments � � % � . The shape of
the distribution is again the same as the original because the maintenance is
a repair-as-good-as-new. The probability distribution for the second period
will therefore be

� � ����� '
� � � � % � � � � ���  % � � if

% � � � � � % �� � � � ����� )�7 � (2.30)

The general solution is achieved by repeating this for � ' � % � with � �����
(see [36, p.14])

���� ����� '
��
�	� � �

�� � % � � � � ���  � % � � (2.31)

This is an important result, because the geometric expression � �� � % � � forces
the PDF to fluctuate between two negative exponential curves. Therefore,
we would expect the failure rate to become more or less constant for higher� , regardless of the original shape of the PDF. This is an important result,
because it shows that measurements of the time to failure should measure
the time from the end of the last maintenance to the moment of failure, and
not as the time between failures. Interpreting time between failures as a TTF
will lead to a stochastic model with negative exponentially distributed dura-
tions, which would not represent the component itself, but the combination
of the component and the planned maintenance. Such models can not be
used for determining the effects of changed maintenance planning.

2.2 Homogenous Markov Models

One of the important qualities of the homogenous Markov model is that it
causes each stochastic system build from homogenous Markov models to
be a homogenous Markov model again, only much larger. This enables the
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calculation of state probability, frequency and duration by analytic matrix op-
erations. Although this seems to be a great advantage, this is only partly
so, because the calculation of system state indices is often much easier by
adding the contributions of the system components. The one exception is
the calculation of system state duration distributions, but these distributions,
although easily obtained for a homogenous Markov system model, will be
unrealistic in such a model. This is so because the one important disadvan-
tage of the homogenous Markov model is the exclusive use of the negative
exponential distribution for all stochastic durations in the system. In the case
of repair of maintenance durations, these distributions are already highly un-
likely, but in the case of life time, they cannot be other than incorrect. Using
a negative exponentially distributed lifetime will always cause the model to
react to preventive maintenance by a lowered overall availability, which is
surely not the case for normal power system equipment.

Nevertheless, the homogenous Markov model is very important due to its
computational elegance. A good understanding of the basic properties of
the homogenous Markov model is required for understanding other models
and methods used in power system reliability assessment.

2.2.1 The Homogenous Markov Component

The monitored stochastic behaviour of a component can be described com-
pletely by a set of state and epoch combinations � � � ��� � � �� � � . This is illus-
trated by Fig. 2.4 which shows a possible graph of the monitored states of a
component with four distinct states; � � � ��� � ��� and ��� .

Tn

Xn

x0

x1

x2

x3

t0 t1 t2 t3 t4 t5

Figure 2.4: Example of monitored states of a component
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If we would monitor the exact same component under exact the same condi-
tions, another set � � � ��� � � �� � � will be the result, as each next state and each
state duration ��� � � �  � � � are stochastic quantities. Each set � � � ��� � � �� � � is an
outcome from a infinite number of possible outcomes, and is called a “com-
ponent history”. The stochastic history for the component with index “c”, is
written as “ � �$��� �! � % ��� �! � ��! � � ”. Both

����� �! 
and

% ��� �! 
are stochastic quantities

and we may talk, for example, about “the probability of
�1��� � � ' ��� ” or “the

probability density function of � % ��� ���  % ��� ��� � ”.
The homogenous Markov model is now defined by:

• the set of possible states � � '�� � � � �������6�	� ��
 where � � is the number
of possible states

• the stochastic history � �$��� �! � % ��� �! � ��! � � , where

– � �! � ����� �! � � � � ����� �! �'*����� �! � � �
–
% ��� � ' � and � �! � % ��� �! � � � % ��� �! �

• the set of continuous probability distribution functions
� ��� &-, ����� for the

conditional state durations � ��� &-,
� ��� &-, ����� ' DEA � � ��� &-, � ���

' DEA � ����� �! .'*) � � % ��� �! � �  % ��� �! � � � � ����� �! � � '0/ �
' �! ����� 	  �+ ��� &-, �

From the homogenous Markov model, the stochastic process
� � ����� can be

defined as

% ��� �! � � � % ��� �! � ��� ��� ����� '*����� �! 
(2.32)

The conditional state durations � ��� &-, are the stochastic durations for state)
, given the fact that the next state will be

/
. An outcome of a history is

obtained by drawing outcomes 	 ��� & � for all conditional state durations � ��� & � in
each state, and selecting the smallest value. Then, with

/
such that 	 ��� &-, ' �:9 � 	 ��� & � � , ����� �! � � '0/

and
% ��� �! � � ' % ��� �! � 	 ��� &-, .
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The probability distribution for the duration � ��� & of state � ��� & is thus the distri-
bution of the minimum of the conditional durations:

� ��� & ����� ' DEA � � ��� & � ��� ' DEA � �
  �:9, � � � � ��� &-, � � ���

' �! �  �
, � �

DEA � � ��� &-, � ��� '��! �  �
, � �

����� 	  �+ ��� &-, �
' �! ����� 	  �+ ��� & � (2.33)

�
+ ��� & ' �  

�
, � �

�
+ ��� &-, (2.34)

The state duration is thus again exponentially distributed and is character-
ized by the single ‘state transition rate’

+ ��� &
. The state transition rate is ex-

pressed in ‘per time’ units, and may thus be interpreted as a frequency. This
frequency, however, expresses the number of transitions out of the state per
time spend in the state, and not per total time. The state transition rate thus
only equals the state frequency for a component with just one state. For
a component with two identical states, the state frequency will be half the
state transition rate. The expected state duration can be directly calculated
from the state transition rate as

� � � ��� & � '
�
+ ��� & (2.35)

For the transition probability � � � ) � / � ' DEA � ����� �! � � ' / � ����� �! ' ) � it follows
that

� � � ) � / � ' DEA � � ��� &-, '
�   �:9�	� � � � ��� & � ���

' ���
�

DEA �  �:9���� , � � ��� & � ����� � �
+ ��� &-, ���
	�� �  � ��� 	 �

' � �
�

�
+ ��� &-, ���
	�� �  � � 	 �

' + ��� &
+ ��� &-, (2.36)

Both the state duration distribution and the transition probabilities are thus
independent of time and independent of the history of the system. By
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(2.36), a constant transition probability matrix � � ' � � � � ) � / �
	 is defined for
the Markov model. The fact that the transition probabilities are constant
means that the sequence of states in a history of the component is indepen-
dent of the time spend in those states. This sequence of states, � � ��� �! � ��! � � ,
is called the “embedded Markov chain”. For Markov chains with stationary
transition probabilities the so-called Markov-property holds, which can be
written as

DEA � ����� �! � � '0/ � ����� � ' � � ����� � '�� ������� � ����� �! '*) � (2.37)' DEA � ����� �! � � '0/ � ����� �! .'*) � ' � � � 	� � ) � / �

where � � � 	� � ) � / � is the value on the
) � / position in the � ��� power of � � . For

all � � � 	�
, � &�� �  , � � � � � 	 � ) � / � '���� � .

The Markov property tells us that the probability to find the component in
a certain state after a certain number of transitions only depends on the
number of transitions and on the starting state.

The homogenous Markov model may be graphically depicted as shown in
Fig. 2.5, which shows a Markov Model with three states. Because the state
duration PDF and the transition probabilities can both be calculated from the
transition rates, the only data needed to completely define a homogenous
Markov model is the set of these transition rates

+ &-,
.

Both the transition probabilities and the conditional state durations in a ho-
mogenous Markov model are independent of the history of the system. This
means that when the component is found to change to a certain state at a
certain time, the probabilities for the next states and the distribution of the
duration of the current state, are always known.

By calculating the state duration rates and the state transition probabilities
from the transition rates, an alternative representation of the homogenous
Markov model results. This representation is graphically depicted in Fig. 2.6.
Both representations are analogous. The transition rates can be calculated
from the alternative model data as

+ &-, ' DEA� � ) � / � � + & (2.38)
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Figure 2.5: The homogenous Markov model
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Figure 2.6: Alternative representation of the homogenous Markov Model

2.2.2 The Homogenous Markov System

A homogenous Markov system is a stochastic model of a power system for
which all stochastic components are homogenous Markov components. The
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homogenous Markov system is nothing more than a combination of those
components.

The homogenous Markov system is defined by

• the number of homogenous Markov components �

• the set of homogenous Markov components
� � ����� �! � % ��� �! � ��! � ��� �� � �

• the resulting stochastic system history � 2 �43 � % �43 � ��43 � � , where

–
2 �43(' � � � � �43 � � � � �43 ������� � � � � �43 � and

����� �43('*��� � % �43 �
– � % �43 � ��43 � � '�� �� � � � % ��� �! � �� � �

The system state
2 ����� at any time � is thus the vector of component states��� ����� at that time. Because the number of possible states is limited for all

components, the system state space is also limited. However, because the
stochastic components are assumed to be stochastically independent, the
number of possible system states is the product of the number of possible
component states. For a moderate system of 100 components, each of
which has two states, the size of the system state space is � � � � possible
states.

The system changes state when at least one of its component changes its
state. However, because all components are assumed to be stochastically
independent, the probability of two of them changing state at the very same
moment is zero:

���	� � 
�� ��� � �� � % � � ��� ' % 
�� �� � (2.39)

For each system epoch
% �43

, there is thus exactly one component with the
same epoch,

� �43 � �� � �! � % �43(' % ��� �! � (2.40)

The system thus changes state because one component changes state, and
that component is therefore called the “causing component”. Each system
state

2 �43
has a single causing component. Two succeeding system states

may have the same causing component.
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For a system which changes to state
2 �43

at time
% �43

, the remaining state
duration for component � is defined as

� � � "#5 � ' % ��� �43� � �  % �43 (2.41)"#5 � ' ���
� � "#� ��� � � % ��� �! � % �43 


(2.42)

and the age of the component state as

9 � � "#5 � ' % �43  % ��� �43� 
(2.43)

These basic relations are illustrated by Fig. 2.7.

X c , n c

S n s

T n s

T c , n s c
T c , n s c + 1

A c ( n s ) D c ( n s )

Figure 2.7: Component Age and Remaining Duration

The age of a component state is the time it has already spend in its current
state at the start of a new system state, and the remaining duration is the
time for which it will continue to stay in that state. The duration of the system
state is the minimum of all remaining component state durations. According
to (2.34), the state durations for the homogenous component are negative
exponentially distributed. Because the conditional density function of a ex-
ponentially distributed duration for all inspection times equals the original
distribution, the distribution of the remaining state duration is independent of
the age of the state and equals the total component state duration distribu-
tion. Therefore,

� �  � �43 	 ����� '��! ����� 	  �+ �43� � (2.44)

where
+ �43� 

is the state transition rate for the state
�1��� �43� 

.
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Because the system state duration is the minimum of the remaining com-
ponent durations, the distribution of the system state duration can be calcu-
lated as:� �

�

3 ����� ' DEA � � �43 � ��� ' DEA �  �:9 � � � � "#5 ��� � ���
' �! ����� 	  �+ �43 � (2.45)

�
+ �43 ' �

�
� � �

�
+ �43� (2.46)

where � �43(' % �43 � �  % �43 is a stochastic system state duration.

From (2.45), it is clear that all system state durations are negative exponen-
tially distributed. Because the minimum outcome for the remaining state du-
rations for all components also determines the next system state, the same
expressions as used in (2.36) can be used to show that the system state
transition probabilities are independent of time. The conclusion is that the
homogenous Markov system is itself again a homogenous Markov model.
This is the most important quality of the homogenous Markov model.

S t a t e
0 1

S t a t e
0 0

S t a t e
0 2

S t a t e
1 0

S t a t e
1 1

S t a t e
1 2

l 1 2

l 2 1

l 2 0
l 0 2

l 1 0

l 0 1

l 2 0 l 0 2

l 0 1

l 1 0

l 1 2

l 2 1

Figure 2.8: A homogenous Markov system

An example of a homogenous system is graphically depicted in Fig. 2.8.
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This example system consists of two components, one with three and one
with two states. The horizontal transitions in this picture are caused by a
change of the two-state component, the other transitions are caused by the
three-state component. From (2.44), it follows that the transition rates of the
Markov system equal the corresponding component transition rates. In Fig.
2.8, the transition rates of the three state component are shown. If the three
state component would be the one shown in Fig. 2.5, then the transition
rates shown in Fig. 2.8 and Fig. 2.5 would be the same.

2.2.3 Interruption Costs Calculations

Stochastic models are used to create specific system states which are then
analyzed. Such analysis may include load flow calculations and topological
analysis, but may also include power system protection algorithms, power
restoration procedures and optimization methods, during which the network
is reconfigured and generation may be rescheduled.

The principle objective of the system state analysis is to express the ability
of the system to meet the load demands in preliminary performance indica-
tors. These preliminary indicators are then used, at the end of the system
state creation and analysis phase, to calculate overall performance indica-
tors. The interruption costs indicators express the expected costs per year
due to load interruptions. For each load point, the LPEIC (load point ex-
pected interruption costs, $/a) indicator expresses the total expected costs
per year due to the interruptions of the loads connected to the load point.

By drawing outcomes for the stochastic conditional state durations for each
component, the duration of the current state and the number of the next state
are determined. When the current state duration has passed, a transition to
the next state is made and new outcomes can be drawn to determine the
new duration and the following state again. In this way, a possible history for
the component can be simulated in time. By performing a parallel simula-
tion of all components in the system, the whole system can be simulated in
time. This way of generating system states in a chronological order is called
“Monte-Carlo simulation”.

Each time a new system state is reached during the Monte-Carlo simulation,
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it is analyzed for performance. Because the simulation of one single period
of, or instance, 5 years, would not make it possible to derive exact overall
performance indicators, it is necessary to simulate and analyze the same
period a number of times. The LPEIC is then calculated as

� � ����� ' ���& � � � � 	 & �
� � analyzed period

(2.47)

where � � 	 & � is a single outcome of the interruption cost function � , for the
simulated duration 	 & , � is the total number of interruptions of the considered
load point during the whole Monte-Carlo analysis, and K is the number of
times the analyzed period was simulated.

The Monte-Carlo simulation technique is very powerful because it allows for
the simulation of about any possible event in the system and it does not re-
quire any restriction on the stochastic component models. Its big disadvan-
tage, however, is its high computational demand. The technique of system
state enumeration is therefore often used in stead.

In a system state enumeration, all relevant system states are created and
analyzed one by one. In this case, no outcomes are drawn for the stochas-
tic durations, but the probabilities and frequencies of the system states are
calculated directly. The big advantage of the state enumeration is that each
possible system state is analyzed only once, and exact results for the per-
formance indicators can be calculated analytically.

For the reliability costs indicators, such as the LPEIC, the state enumeration
methods, however, are problematic. In many textbooks and articles (e.g.
[16],[43]), the following equation is used for calculating the LPEIC.

� � ����� ' �
�
& � � �

& � � � 	 & � (2.48)

where � & is the frequency of the
) ��� system state that causes an interruption

of the load point and
�

is the number of different system states which lead
to such interruption. This equation, however, is principally wrong, as it as-
sumes that all interruptions caused by the

) ��� system state are of duration	 & . This is an assumption that can not be justified, as the durations of repairs
or maintenance are stochastic.
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The use of (2.48) is often defended by the assumption that power to an in-
terrupted load will be restored by network reconfiguration, and not by repair.
Network reconfiguration can normally be modeled by using switching dura-
tions with a small standard deviation. Three arguments against the use of
(2.48) in a state enumerated reliability assessment are formulated here.

1. It is often unknown if power can be restored to all interrupted loads by
network reconfiguration alone, in all cases. One objective of a reliabil-
ity assessment may be to find cases where such restoration methods
fail.

2. The financial risk related to interruption costs cannot be assumed to
be determined by the majority of cases in which the restoration pro-
cedures work as planned. Load interruption during unusual system
conditions may lead to unexpected high restoration durations. Such
may happen in the case of failing protection devices, stuck breakers,
unavailable (backup) transmission lines, peak load situations, etc.

3. Wide area power systems, or systems in rural areas, may lack the
needed network reconfiguration options or may ask for the modeling
of switching times as stochastic quantities.

4. Statistical data shows a considerable spread in interruption duration
([21], [98], [70])

For a correct calculation of interruption costs or other reliability cost indi-
cators, it is therefore necessary to assess the duration distribution of all
interruptions during a state enumerated reliability assessment. If these dis-
tributions are known, the LPEIC should be calculated as

� � ������' �
�
& � � �

& � � & � � � 	 ��� (2.49)

where
� & � � � 	 ��� is the expected value of the interruption costs, given the

duration PDF for the
) ��� system state and the load interruption cost function.
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2.2.4 Device of Stages

The homogenous Markov model makes it possible to quickly calculate the
distribution of the duration of any system state, because all components
use negative exponential distributions exclusively. This distribution, how-
ever, has not been selected because it was a good model for the actually
measured component state duration, but only because it simplified the cal-
culations. The distribution of the Markov system state duration therefore
cannot be used to calculate reliability worth indices.

The only alternative to using homogenous Markov models is using non-
homogenous models. The problem with these models, however, is that it
is normally very hard, if not impossible, to calculate a system state duration
distribution. The Weibull-Markov model, which will be introduced in the next
chapters, forms an exception to this rule.

For non-homogenous models, it is commonly tried to convert the model into
a Markovian model, preferably a homogenous one. One of the possible
ways for such conversion is the method of the device of stages. Because
this method is considered a general solution for the case of having non-
homogenous component models, it is introduced here. It will be shown,
however, that this method is not a solution to the problem of assessing inter-
ruption costs.

The method of the device of stages represents each state which has a non-
exponential duration distribution by a combination of ‘virtual’ states that are
exponentially distributed. The series and/or parallel combinations and the
transitions rates of those virtual states are chosen so as to make the duration
distribution of the transitions through the group of virtual states as good
an approximation as possible of the original non-exponential distribution.
The representation of a single non-exponential state by a combination of
exponential states is illustrated by Fig. 2.9, for a two-state component. The
state “1” of this component is non-exponential and is therefore converted
to a series-parallel combination of 5 exponentially distributed states. The
transition rates for these 5 virtual states should now be chosen so that the
distribution of the duration between entering state “a” or “b” and leaving state
“e” should equal, or approximate, the duration distribution of state “1”.
The method of the device of stages can be used to calculate time depen-
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c d

e

Figure 2.9: Example of a device of stages

dent state probabilities, and may thus be used for addressing ageing effects,
effects of preventive maintenance, or other time-dependent behaviour of the
component. However, it is not a solution to the problem of calculating sys-
tem state duration distributions. This is best illustrated by an example. In
Fig. 2.10, a system with two components is depicted, each of which has two
states. Assumed is that the UP state of these components (“0” and “a”) are
negative-exponentially distributed, but the DOWN states (“1” and “b”) are
Weibull distributed. The system is supposed to function when at least one
component is in the UP state. The question therefore is to find an expres-
sion of the distribution of the system down time, which is the distribution of
the duration of system state “1b”, which is shown in grey in Fig. 2.10.

0 a 1 a

0 b 1 b

0 a

0 b

0 a 1 a

0

1

a

b

Figure 2.10: System with two two-state components

Even for this very simple system, the expression for the system down time
distribution is not simple because it is the distribution of the minimum of a
Weibull distribution with the remaining distribution of another Weibull distri-
bution, for which the age is unknown.
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In Fig. 2.11, the two down states of the two components have been con-
verted to a series of two and three virtual states: ‘1’, ‘2’ and ‘b’, ‘c’, ‘d’. The
resulting system now has 12 possible states, of which 6 are down states.
The system has now become homogenous Markovian, and for each of the
states in Fig. 2.11, the durations are negative exponentially distributed.
However, in order to develop an expression of the duration distribution of
the combination of the six system down states, we would have to account
not only for the six states, but also for every way in which the system could
change from an up state to a down state and back again, and for every pos-
sible route between entering and leaving the part of the state space with
down states. For a combination of a number of virtual states in series, or a
number of virtual states in parallel, such overall distributions can be found.
For more complex virtual state spaces, such as the one in Fig. 2.11, no
general way of calculating the overall duration distribution could be found.

0 a 1 a 2 a

0 b 1 b 2 b

0 c 1 c 2 c

0 d 1 d 2 d

0 a

0 b

0 c

0 d

0 a 1 a 2 a

a

b

c

d

0

1

2

Figure 2.11: Converted components and resulting system

2.3 Weibull-Markov Models

The Weibull-Markov model is a non-homogenous Markov model. Although
the mathematics involved in defining and using the Weibull-Markov model

28



Stochastic models

are somewhat more complex than those used for the homogenous Markov
model, it will be shown that this model lends itself for all types of reliability
calculations possible with the homogenous Markov model, and yet enables
a correct analytical calculation of interruption costs.

The definition of the Weibull-Markov component starts by altering the ho-
mogenous component by using not a negative exponential distribution, but
a Weibull distribution for the conditional state durations. The result is a
stochastic component, defined by

• the set of possible states � � '�� � � � �������6�	� ��
 where � � is the number
of possible states

• the stochastic history � �$��� �! � % ��� �! � ��! � � , where

– � �! � ����� �! � � � � ����� �! �'*����� �! � � �
–
% ��� � ' � and � �! � % ��� �! � � � % ��� �! �

• the stochastic process
�$� ����� '*����� �! 

for
% ��� �! � � � % ��� �! � �

• the set of continuous probability distribution functions
� � ����� for the con-

ditional state durations � ��� &-,
� ��� &-, ����� ' DEA � � ��� &-, � ���

' DEA � ����� �! ('*) � � % ��� � � �  % ��� �! � � � � ����� � � � '0/ �
' �! ����� �  	 �

: ��� &-, � �  � �����

This model with Weibull distributions, which has independent duration dis-
tributions defined for each transition separately, equals the homogenous
Markov model when all shape factors

; ��� &-,
equal one.

The above model is mathematically problematic in the sense that it it is even
hard to derive a useful expression for the component state duration dis-
tribution. As with the homogenous model, the next state and the current
state duration are determined by drawing outcomes for all conditional state
durations and selecting the lowest one. The probability distribution for the
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duration � ��� & of state � ��� & is therefore the distribution of the minimum of the
conditional durations:� ��� & ����� ' DEA � � ��� & � ��� ' DEA � �

  �:9, � � � � ��� &-, � � ���

' �! �  �
, � �

DEA � � ��� &-, � ��� '��! �  �
, � �

����� �  
	 �
: ��� &-, � �  � ��� �

' �! ����� �� �  
�
, � �

 	 �
: ��� &-, � �  � ������ (2.50)

Expression (2.50) can be simplified drastically by taking a same shape factor
for all conditional state durations in a same state:

; ��� &-, ' ; ��� &
(2.51)

For such “same shape” models,

� ��� & ����� ' �! ����� � 	  �
: ��� & � �  � � � (2.52)

	 �
: ��� & � �  � � ' �  

�
& � �

	 �
: ��� &-, � �  � � (2.53)

The state duration for a “same-shape” Weibull distributed component is thus
again Weibull distributed with the scale factor given by (2.53). The stochas-
tic component as defined above, together with (2.51) is called a “Weibull-
Markov” component.

With the expression for the state duration distribution, the transition proba-
bility matrix for the Weibull-Markov component can be derived as

� � � ) � / � ' DEA � � ��� &-, '
�   �:9�	� � � � ��� & � ���

' ���
�

DEA �  �:9���� , � � ��� & � � ��� � ; ��� & �
�  � � � �

: � ��� &��� &-, ��� � 	����  � ��� 	��  � � 	 �
' ���

�

; ��� & � �  � � � �
: � ��� &��� &-, ��� � 	����  � � 	 �  � � 	 �

' : ��� &
: ��� &-, (2.54)
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The transition probabilities for the Weibull-Markov component are thus in-
dependent of time and independent of the history of the component. The
Weibull-Markov model is thus a semi-Markov model. With the stationary
transition probabilities, it is clear that

�1��� �! 
is again an embedded Markov-

chain for which

DEA � ����� �! � � '0/ � ����� � ' � � ����� � '�� ������� � ����� �! .'*) �
' DEA � ����� �! � � '0/ � ����� �! .'*) � ' � � � 	� � ) � / �

where � � � 	� � ) � / � is the value on the
) � / position in the � ��� power of � � . For

all � � � 	�
, � & � �  , � � � � � 	 � ) � / � '���� � .

Expressions (2.53) and (2.54) are equivalent to their homogenous counter-
parts (2.36) and (2.34). A graphical representation of the Weibull-Markov
component is shown in Fig. 2.12.

P r 0 1

P r 1 0

P r 1 2 P r 2 1

P r 2 0

P r 0 2

h o ,  b 0 h 1 ,  b 1

h 2 ,  b 2

S t a t e  0 S t a t e  1

S t a t e  2

Figure 2.12: The Weibull-Markov Model

The definition and basic equations of the Weibull-Markov model look very
much alike those of the homogenous Markov model, except for the addi-
tional distribution shape parameter

;
. The requirement that the new model

should be compatible with the homogenous Markov model is met: all ho-
mogenous Markov models can be transformed into Weibull-Markov models
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without a need for new reliability data, by using
; ' �

in all states. Existing
measurements of component reliability can be used at any convenient time
to calculate more realistic shape factors. It is possible to gradually substitute
homogenous data by a more realistic Weibull-Markov data.

2.3.1 Component State Probability and Frequency

The fact that the Weibull-Markov model is fully compatible with the homoge-
nous Markov model is very important. Even more important is the require-
ment that it should be possible to analyze Weibull-Markov components by
fast and exact methods. These component analyses are needed to calculate
component state probabilities and frequencies, which are needed to speed
up a system analysis. The assessment of system reliability indices does not
ask for ‘solving’ a large Weibull-Markov model. As will be shown, a system
build from Weibull-Markov models is very hard to analyze as a whole with
analytic methods. However, by ‘pre-processing’ the components, the system
properties can be assessed by adding the contributions of the components.

The state probabilities and frequencies of a Weibull-Markov component can
be calculated by first regarding the embedded Markov chain. For any Weibull-
Markov model, leaving out the component index, the chain state probability
vector is defined as� � ' � DEA � � � '�� ��� DEA � � � ' � ��������� � DEA � � � ' � � �
	 (2.55)

The chain state probability vector can be calculated from the initial state
probability after n state transitions as� � ' � � � 	 � � � (2.56)

where

� ' � � � ) � / �
	 '
����
�
� � � � � � � � � � � � � � � � 7 � ����� � � � �	� �
� � � � � � � � � � � � � � � � 7 � �����

...
...

� � � � � � ����� � � � �	� �

�����
�

and � � ) � / � ' DEA � � � � � '0/ � � � '*) �
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In [88] it is shown that for a Markov chain with stationary transition probabil-
ities, the long term state probabilities can be found by solving� ' � � � (2.57)

where� ' � � � � ��� � � � ���������6� � � � �
	 ' 
���� � � � �
(2.58)

With the Weibull-Markov component, there are no self-transitions, and there-
fore � & � � � ) � ) � ' � � . The long term Markov chain state probabilities can be
solved by using

� &
�� �  
�
, � � �

� ) � / � '���� �
��

(2.59)

�  
�
& � �

� � ) � '���� � (2.60)

and by taking

9 &-, ' � � � ) �	� � � �
if
) '0/

� � ) � " �  � � ) � / � if
) '0/

� & ' � � ) �	� �
��� ' � � � � ��� � � � ��������� � � � �  � �
	

A solution for
� �

can then be found by solving

9 � ��� ' �
(2.61)

and
� � � � is found by using (2.60) again.

The state probabilities for the Weibull-Markov component can be calculated
from the embedded state probabilities as

DEA � ) � ' � � ) ��� � � � & �
� �& � � � � ) ��� � � � & � (2.62)
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where
� � � & � ' : & � � � � �� ��� is the expected duration of state

)
.

With the known Weibull-Markov state probabilities
DEA � ) � , the state frequen-

cies
@BA � ) � can be calculated as

@BA � ) � ' DEA � ) �
� � � & �

2.4 The Weibull-Markov System

The Weibull-Markov system is defined in the same way as the homoge-
nous Markov system; as a stochastic model of a power system for which all
stochastic components are Weibull-Markov components.

The Weibull-Markov system is thus defined by

• the number of Weibull-Markov components �

• the set of Weibull-Markov components
� � ����� �! � % ��� �! � ��! � � � �� � �

• the resulting stochastic system history � 2 �43 � % �43 � ��43 � � , where

–
2 �43(' � � � � �43 � � � � �43 ������� � � � � �43 � and

����� �43('*��� � % �43 �
– � % �43 � ��43 � � ' � �� � � � % ��� �! � �� � �

Except for the different component state duration distributions, the Weibull-
Markov system behaves in the same way as the homo/-genous Markov sys-
tem. Again, the probability of two components changing state at the very
same moment is zero:

���	� � 
�� ��� � �� � % � � ��� ' % 
�� �� � (2.63)

and thus

� �43 � �� � �! � % �43(' % ��� �! � (2.64)
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Identical definitions for the remaining state duration and the age of the com-
ponents � for all system states are used.

� � � "#5 � ' % ��� �43� � �  % �43 (2.65)"#5 � ' ���
� � "#� ��� � � % ��� �! � % �43 


(2.66)9 � � "#5 � ' % �43  % ��� �43� 
(2.67)

However, where the distribution of the remaining duration of the state of a ho-
mogenous component equals the distribution of the complete duration, this
is generally not the case for a Weibull-Markov component. For a Weibull-
Markov component, the distribution of the remaining duration normally de-
pends on the history of the system. As the system state duration is the mini-
mum of the remaining component state durations, this dependency makes it
very hard, if not impossible, to derive exact expressions for the system state
duration distribution as a whole. Even more important is that also the proba-
bilities for the following system state become history dependent, as they are
too determined by the smallest outcome of the remaining component state
durations.

From this it is clear that the Weibull-Markov system is not only a non-homo/-
genous model, but even not a Markov model. It will however be shown that
the Weibull-Markov system will becomes a semi-Markov system again when
it is assumed to be stationary.

2.4.1 Weibull-Markov System State Probability and Frequency

The Weibull-Markov model can only be an alternative to the homogenous
Markov model if it is possible to calculate state probabilities and frequencies
analytically with comparable computational efforts.

The probability for a system state
7

is defined as the probability to find the
system in that state at time � and is written as

DEA � 7 ����� ' DEA � 2 ����� ' 7 � . For
any moment in time:

� 3
�
5 � �

DEA � 2 ����� '87 � '��
(2.68)

where � 5 is the number of possible system states.
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As all component are assumed to be statistically independent, the system
state probability is the product of the component state probabilities:

DEA � 7 ����� '
��
� � �

DEA � ��� ����� ' � � � (2.69)

The frequency of a system state
7

is defined as the density of the number
of transitions into the system state per unit of time, for a certain moment in
time.

@BA � 7 ����� '�� ) � � � � �
� � number of transitions to s in � ����� ��� �
	��� � (2.70)

If we write a system with only two components as
2 �

, the upper index being
the number of components, then the frequency of the system state

7 � '
� ��� � ��� � at � is the frequency of

� � ����� ' ��� times the probability of
� � ����� ' ��� ,

plus the frequency of
� � ����� ' ��� times the probability of

� � ����� ' ��� .
DEA � 7 � ����� ' DEA � ��� ����� � DEA � ��� ����� (2.71)@BA � 7 � ����� ' @BA � ��� ����� � DEA � ��� ����� � @BA � ��� ����� � DEA � ��� ����� (2.72)

This can be repeated for a third component and the two-component system:
DEA � 7 � ����� ' DEA � 7 � ����� � DEA � ��� ����� (2.73)@BA � 7 � ����� ' @BA � 7 � ����� � DEA � ��� ����� � @BA � ��� ����� � DEA � 7 � ����� (2.74)

and, by induction, for the whole system:
DEA � 7 ����� ' DEA � 7 � � � ����� � DEA � � � ����� (2.75)@BA � 7 ����� ' @BA � 7 � � � ����� � DEA � � � ����� � @BA � � � ����� � DEA � 7 � � � ����� (2.76)

These recursive equations for probability and frequency are independent of
the state duration distributions. The recursive equation for the system state
frequency can be rewritten into

@BA � 7 ����� '
�
�
� � �

��
@BA � � � ����� �

��
� � � � � �� �

DEA � � � �����
��

(2.77)

or into

@BA � 7 ����� ' DEA � 7 ����� �
�
�
� � �

@BA � � � �����DEA � � � ����� (2.78)
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The equality (2.77) is known as the state frequency balance.

For the stationary system, for � � � , the component state probabilities
and frequencies become time independent and are written as

DEA � � � � and@BA � � � � . The system state probability and frequency will then also become
time independent as

DEA � 7 � ' 
���
� � �

DEA � 7 ����� '
��
� � �

DEA � � � � (2.79)

@BA � 7 � ' 
���
� � �

@BA � 7 ������� ' DEA � 7 � �
�
�
� � �

@BA � � � �DEA � � � � (2.80)

For the stationary system, the expected state duration, or ‘state expectancy’,
in units per time per unit of time, equals the state probability. The expected
system state duration is then calculated by dividing the system state ex-
pectancy by the system state frequency:

� � � 5 � ' DEA � 7 ��� @BA � 7 � (2.81)

In most reliability assessment calculations, the unit of frequency is taken as� ��� , where � ' annum
'�����	 � hours, and the expectancy is expressed in

hours. In that case,

� � � 5 � ' DEA � 7 � � ����	 �
� @BA � 7 � hours (2.82)

2.4.2 Weibull-Markov System State Duration Distribution

For homogenous systems, the system state duration distribution is found
without problems. Because the system too is a homogenous Markov model,
the system state duration will be distributed according to a negative expo-
nential distribution, with a duration rate which is the reciprocal sum of all
corresponding component transition rates.

To find an expression for the state duration distribution of a Weibull-Markov
system, it is important that we consider stationary systems only. This means
that all component models in the system are stationary, and the history for
each component beyond the last state change is irrelevant.
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Suppose a stationary system with two components. If we would monitor
such a system for a short period, a graph as depicted in Fig. 2.13 could be
the result. It is now possible to regard the epochs of the one component as

1

2

A1(n j)

D2(n i)A2(n i)

D1(n j)

ni

nj

Figure 2.13: A monitored period for a two-component system

inspection times for the other, and vice versa, as is depicted in Fig. 2.13. As
long as each system state is treated separately, and because both compo-
nents are stationary and stochastically independent, each separate epoch
of the one is a random inspection time for the other.

The derivation of the expression for the system state duration distribution
starts with a well known result from renewal theory, according to which a
component

���
, when found in state

)
at a random inspection time � , has a

remaining state duration distribution according to

DEA � � ��� &  � � � � � ��� & � ��� ' �
�<��� &

� �
�
� �  "� ��� & �����
	 	 � (2.83)

where
�<��� &

is the mean duration of
�$�.'*)

and
� ��� & ����� ' DEA � � ��� & � ��� .

By using the random epochs of the one component as an inspection time for
the other, the remaining state duration � � � "=, � and � � � " & � in Fig. 2.13 will
thus respect (2.83).
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According to (2.83), the distribution of the remaining state duration is inde-
pendent of the passed state duration, � ��� &  � , at the moment of inspection� , for all types of distributions for the total state duration

� ��� & ����� . From this,
it follows that the probability of

� �
, when found in state

)
at time � , to not

change state in the interval � � � � � � � is

DEA � ��� ��� � � � '*) � ��� ����� '*) � ' �
�<��� &

���
� � �! "� ��� & �����
	 	 � (2.84)

Because a system will change as soon as one of its components changes,
the probability of a system, consisting of � components, which is found in
state

7
at time � , with

% �43 � � � % �43 � � , to not change state in the interval� � � � � � � is

DEA � 2 ��� � � � '87 � 2 ����� '87 � '
��
� � �

�
� ��� �43

���
� � �! � ��� �43 �����
	 	 � (2.85)

where
�<��� �43

is the mean duration of
�$��� �43

and
� ��� �43 ����� ' DEA � � � � �43 	 � ��� .

Expression (2.85) is an important first result, because it shows that it is
possible to express the remaining system state duration distribution in terms
of component state properties. However, we do not want to calculate the
distribution of the remaining system state duration for arbitrary inspection
times, but the distribution for the whole state duration. The inspection time in
(2.85) then equals the moment at which the system state starts, which is the
moment at which the causing component changes its state. The distribution
of the ‘remaining’ state duration for that one component will thus equal the
distribution of the total state duration. For all other components, we have
to use (2.84), as they have already spend some time in their state at the
moment the new system state starts.

If we suppose that component
�$�

is the causing component for system state2 �43
, then it follows that he probability of that system state, when its starts at

epoch
% �

because component
�$�

changed state at
% �

, to last longer than
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� , is
DEA � 2 � % �43 � � � ' 2 �43 � ����� �43 '*����� �43 � � � '

' � �! � ��� �43 � � �
	
��
���� �

	 �
� � � �43

���
� � �! � � � �43 �����
	 	 � � (2.86)

All that is left now to do is to find an expression for the probability for each
component to be the causing component for system state

2 �43
. Equation

(2.86) can then be weighted by that probability and the distribution of the
system state duration can then be found by summing the weighted expres-
sions for each component.

The probability that
�$�

is the causing component of system state
2

is the
fraction of occurrences of that system state which happen due to a change
of
���

. That fraction of occurrences is the relative system state frequency
due to

���
, which is written as

@BAF5 � ��� � . If
7 ' � ��� � 5 �������6� � ��� & ������� � � � � 5 � , then7

can be reached by any transition of component
�1�

from � ��� , �� & to � ��� & . Pos-
sible previous states of

7
are therefore all � � � � 5 ������� � � ��� , �� & ������� � � � � 5 � . This is

depicted in Fig. 2.14.

X1,..., Xc=i ,..., XN

X1,...,Xc=1,..., XN

X1,...,Xc=i-1,..., XN

X1,...,Xc=i+1,..., XN

X1,...,Xc=Nc,..., XN

Figure 2.14: Transitions due to changing
�1�

For each of the transitions shown in Fig. 2.14, the absolute transition fre-
quency equals

@BA � ����� �43 � � '0/ � ����� �43('*) � ' @BAC� � / � ) � �
��
���� �

DEA � � � � 5 � (2.87)

40



Stochastic models

and the total transition frequency for any of these states to
2

thus equals

@BA � ����� �43 � � '*) � ����� �43('*) � ' �  
�
, �� &

@BA � ����� �43 � � '0/ � ����� �43('*) �

' @BAC��� & ��
���� �

DEA � � � � 5 � (2.88)

For (2.88), it was used that
@BA���� &?' � �  , �� & @BAC� � / � ) � , which expresses the fact

that a component state frequency is the sum of the absolute transition fre-
quencies into that state.

With (2.88), the probability that
�$�

causes
2

is now expressed as

DEA � ����� �43 � � '*����� �43 � ' @BA � � ��� 5 � � ����� � DEA � � � � 5 �
� �� � � � @BA � � ��� 5 � � ����� � DEA � � � � 5 � � (2.89)

' @BA � � ��� 5 ��� DEA � � ��� 5 ���
� �� � � @BA � � ��� 5 ��� DEA � � ��� 5 � (2.90)

which results in

DEA � ����� �43 � � '*����� �43 � ' � � �<��� 5
� �� � � � � �<��� 5 (2.91)

For a Weibull-Markov system, (2.86) takes the form of

DEA � 2 � % �43 � � � ' 2 �43 � ����� �43 '*����� �43 � � �

' � ������  � 3�� �  � 3 ��
���� �

�
� � � 5

���
� � � �	���
  3 	 � 
  3 	 � (2.92)

' � ������  � 3 � �  � 3��
���� �

: � � 5� � � 5 ; � � 5
� � 	 �

; � � 5 �  � 	 �
; � � 5 � �

�: � � 5 �
� 
  3 ��� (2.93)

where � � � ��� � denotes the incomplete gamma function for � from � to � .
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The combination of (2.91) and (2.93) leads to the following expression for
the probability for the duration of system state

2
to last longer than D:

DEA � % �43 � �  % �43 � � � '�
�
� � �

� DEA � ����� �43 � � '*����� �43 � � DEA � 2 � % �43 � � � ' 2 �43 � ����� �43 '*����� �43 � � ���

' � �� � � � ��� 5 � � ��� �<��� 5
� �� � � � � �<��� 5

�
�
� � �

����� �  � � � : ��� 5 � �  � 3 �
� ��� 5 � � � (2.94)

where

� ��� & � � � '
: ��� &
; ��� & � � 	 �

; ��� & �  � � �
; ��� & � 	 �: ��� & � �  � � �  (2.95)

From equation 2.94 and 2.95, it is clear that the system state duration dis-
tribution is independent of the previous system states in the steady state
case. The � ��� & � � � function only depends on the component state duration
distribution parameters

;
and : . The � ��� & � � � values for each component can

thus be calculated prior to the actual reliability assessment.

2.5 Basic Power System Components

This chapter shows a possible implementation of a Weibull-Markov model
for modeling stochastic power system components. The proposed methods
are introduced on the basis of a model for the synchronous generator.

2.5.1 Defining a Weibull-Markov Model

The Weibull-Markov model is determined by the following set of parameters.

• N, the number of states

• {
; &

}, the set of form-factors, one for each state

• { : & }, the set of characteristic times, one for each state

• P, the transition probability matrix
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• Electrical parameters, which define the electrical model for the com-
ponent for each state

It is however possible to enter the state duration parameters other than by
;

and : , as in many cases, these are unknown. Alternatively,

• { � & }, the mean state durations

• { 
 & }, the state duration variances

is possible too.

Any two of the resulting possible state duration parameters,
; &

, : & , � & , 
 & , will
determine the other two. The following conversion formulas can be used:

� � ; � : � ' :�� � � ; �
� � ; � 
 � ' � � � ; � 
 �� � � ; �

 � ; � : � ' � : � � � � ; �

 � ; � � � ' � � � � � ; �� � � ; �
; � : � � � ' � inv� 	 �

: �
; � : � 
 � ' � inv� 	 �

: �
; � � � 
 � ' � inv� 	 �

�

: � �
: � ; � � � ' �� � � ; �
: � ; � 
 � ' 
 �� � � ; �
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where� � � ; � ' + � � � � �
; �� � � ; � ' � � � � �; �  � � � � �

; � �

� � � ; � ' � � � ; � �� � � ; �
The inversion of � � � ; � , � � � ; � and � � � ; � can be performed by newton meth-
ods. De values for � � : � 
 � , 
 � : � � � and : � � � 
 � can be calculated by first
calculating the corresponding

;
.

The above set of conversion formulas enables an easy definition of a Weibull-
Markov model. However, it is also possible to leave all form-factors {

; &
} to

their default values of one, and enter the Weibull-Markov model as a ho-
mogenous Markov model. Such would be needed if no other than homoge-
nous model data is available. In stead of {

; &
}, { : & } and P, the homogenous

Markov model requires the input of:

• {
+ &-,

}, the matrix of state transition rates

This asks for the conversion of the state transition matrix to the transition
probability matrix P. Such conversion can be done by using (2.36).

The back transformation from the state probability matrix to a state transi-
tion matrix can be performed by using the calculated state duration means
and (2.38). This back transformation makes it possible to switch between
‘homogenous input mode’ and ‘Weibull-Markov input mode’, which may be
used to check the validity of the model or to check the correct transformation
of a homogenous model into a more realistic Weibull-Markov model.

2.5.2 A Generator Model

The basic stochastic generator model is fairly primitive, as it only defines
states for the generator being available or not available. In many applica-
tions, such a two-state model is sufficient. However, there are several rea-
sons to include more states to account for partial outages of the generator.
Such a partial outage is a condition in which the generator is still connected
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to the net and is still producing power, but in which the maximum output is
limited. Such a situation may occur when

• A run-of-the-river hydro turbine is reduced in capacity due to a low river
level.

• A large, multi-machine thermal power plant is reduced in capacity due
to the outage of one or more generator units.

• The available power is reduced due to the outage of a sub-component,
such as a pulverizer, a fan, a feed water or cooling water pump, etc.

A state that models a partial outage is called a “derated state”. In order
to account for derated states, which number may differ from generator to
generator, it must be possible to freely define new states.

The implementation of the dialog which is used to define a stochastic gener-
ator is shown in Fig. 2.15. This example shows a generator with two derated
states which has been defined as a Weibull-Markov model after which the
dialog was changed to the homogenous Markov mode. It therefore shows
the transition rate matrix and it would be possible to edit this matrix. This
might be useful when stochastic data is available in several different formats,
which are all to be translated into state transition rate models. The entry for
the “dependent state” in the figure is needed to calculate the remaining tran-
sition probability, in order to make sure that the transition probabilities add
up to one for each state.
The electrical models for the different states of the synchronous generator
only differ in the maximum available active power and in the number of avail-
able machines. The latter is only of importance when the stochastic model
is used for a multi-machine power plant. The dialog for defining the electrical
model is shown in Fig. 2.16.
Because the Weibull-Markov model allows for defining the shape of the state
duration distribution, the dialog has ‘graph’ page, which is shown in Fig.
2.17. This page shows the duration distribution and a set of state param-
eters, such as the frequency and the MTBS (mean time between states).
The state parameters are calculated from the entered model and are shown
for reference and checking purposes. The shown graph page shows the
distribution and state parameters for the ‘out of service’ state. The state
probability informs the user that this generator is out of service for more
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Figure 2.15: The stochastic model for a synchronous generator

Figure 2.16: Electrical parameters for the stochastic generator

than 10% of time (942.1851 h/a), from which he may decide to check the
stochastic data used.
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Figure 2.17: State duration graph and state parameters
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Chapter 3

Applications / Examples

3.1 Comparison with Monte Carlo Simulation

The methods presented in this thesis for calculating the system state du-
ration distribution by evaluating (2.94) and (2.95) were tested for a small
system of 20 two-state components. As the test system was strictly ‘(n-1)’,
two or more overlapping outages were taken to result in an interruption.

Two cases were analyzed: one with
; ' ��� � for the repair duration distri-

bution, which thus resulted in a homogenous Markov system, and one with; ' 7 � � , thus modeling a bell-shaped repair duration distribution. In both
cases, the lifetime distribution was modeled with

; ' �
and the mean repair

duration was set to 5. All components used the same stochastic data in
order to make hand-calculated checks possible.

Both a Monte Carlo simulation and a state enumeration method were used
to find the interruption duration distribution for both cases. The four resulting
distribution functions (

DEA � ��� 	 )) are shown in Fig. 3.1.
This result shows a close resemblance between the Monte-Carlo result and
the analytical result. The distribution for

; ' �
is, as can be shown easily,

close to the exponential distribution with a scale factor equal to half the mean
repair duration. Differences between the two curves are not due to an error
in the analytic (Weibull-Markov) model. In stead, they are caused by the
inaccuracy in the Monte-Carlo simulation.
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Figure 3.1: Calculated Duration Distribution Functions

3.2 Small System Example

To demonstrate both the use and the importance of the Weibull-Markov
model, a small example system has been analyzed. A single line diagram of
this example system is depicted in Fig. 3.2. The boxed data shows the line
failure frequency and expected down time per year. This data was entered
as per length values. The complete set of reliability data is listed in Table
3.1. Both the lifetime and the repair duration are negative exponentially dis-
tributed, as

; � '��
and

; � '��
.

line length failure rate
; � repair duration

; �
km 1/a � � ��� � � h

L1 10 1 1 2 1
L2ab 30 2 1 2.5 1
L3 3 3 1 1.5 1

Table 3.1: Line data used

The load point data used is listed in Table 3.2. All three loads use the same
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L1

0.1 1/a
0.2 h/a

0.1 1/a
0.2 h/a

L2
b

0.6 1/a
1.5 h/a

0.6 1/a
1.5 h/a

L3


Ld_25

1.500 h
0.1500 1/a
5.625 Ch/a
0.002 M$/a

Ld_150

1.250 h
0.0002 1/a
0.039 Ch/a
0.000 M$/a

Ld_50

1.998 h
0.1002 1/a

10.013 Ch/a
0.012 M$/a

L2
a

0.6 1/a
1.5 h/a

0.6 1/a
1.5 h/a

0.150 1/a
0.22 h/a

0.150 1/a
0.22 h/a

Figure 3.2: Example System with Homogenous Result

interruption costs function, which is depicted in Fig. 3.3. This function is a
combination of measured data and a penalty for interruptions longer than 3
hours.

Name Total Active Power Connected Customers
MW

Ld_25 0.64 25
Ld_50 1.26 50
Ld_150 2.90 150

Table 3.2: Load data used

No failure data was used other than for the line failures. The load point
reliability indices were calculated for the homogenous system by using a
state enumerated assessment ([16]) for all system states. A larger system
would only be analyzed up to the third or fourth contingency level, as deeper
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Figure 3.3: Load Point Interruption Cost Function

levels would enormously increase the computing time. The results for the
homogenous system are depicted in Fig. 3.2. Each load point shows the

• avg. interruption duration in h

• avg. customer interruption frequency in 1/a

• load point interruption time in customers � h/a

• load point expected interruption costs in M$/a

The reliability assessment was repeated for a bell-shaped repair duration
distribution by setting

; � '87
for all lines. The system-overall results for some

reliability indices are listed in Table 3.3. The steady state non-monetary in-
dices are not influenced by the change of the interruption distribution, as
expected. The values for the expected interruption costs (EIC) and the in-
terrupted energy assessment rate (IEAR), however, are about one-third of
the values assessed by using homogenous models. Using interruption cost
indices obtained by homogenous assessment methods may thus lead to
unneeded investments or uneconomical contracts.
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Homogenous Weibull diff.
CAIFI 1/Ca 0.039 0.039 -
CAIDI h 1.78 1.78 -
ENS MWh/a 0.397 0.397 -
ACCI kWh/Ca 1.76 1.76 -
EIC k$/a 36.7 14.5 253%
IEAR $/kWh 92.5 36.6 253%

Table 3.3: Results

3.3 Larger System Example

An example is shown here for a 11kV distribution system. This system is
based on the test system described in [6]. Although hypothetical, it is based
on a real UK system. It is chosen here because of its size and complexity.

The system has 13 busbars, 72 terminals and 56 load points. A reliability
analysis was made for a single load level according to table 3.4. Each load
point has a fixed number of customers,which is also listed in table 3.4. All
loads have the same interruption cost function, which is listed in table 3.5.
This cost function is a variant of the one given in [17], extended for longer
interruption durations.

The failure data used for lines, cables, transformers and busbars is listed in
tables 3.7 and 3.8. The cables encircled in the single line diagram have a
common mode failure mode defined, which is given in table 3.6.

A reliability assessment was made for the whole system in the single line
diagram. A maximum number of overlapping failures of two was used. The
reliability assessment calculated overall system indices as well as individual
load point indices for all load points in the system. Reliability worth indices
were calculated too. These results are listed in table 3.9 and 3.10. The less
frequently interrupted loads are not listed.
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Name MW MVAr Cust. Name MW MVAr Cust.

C2a 0.50 0.02 100 C11a 0.40 0.08 80
C2b 0.52 0.02 104 C11b 0.30 0.06 60
C2c 0.40 0.02 80 C11c 0.40 0.08 80
C2d 0.90 0.18 180 C12a 1.50 0.30 300
C3a 0.54 0.02 108 C12b 1.20 0.24 240
C3b 0.62 0.02 124 C12c 1.20 0.24 240
C3c 1.10 0.22 220 C13a 2.20 0.45 440
C4a 0.90 0.18 180 C13b 2.20 0.45 440
C4b 0.40 0.08 80 C14a 0.10 0.02 20
C4c 1.60 0.32 320 C14b 0.10 0.02 20
C5a 1.00 0.20 200 C14c 1.70 0.35 340
C5b 1.40 0.28 280 C15a 1.80 0.37 360
C5c 2.30 0.02 460 C15b 0.70 0.14 140
C6a 1.00 0.20 200 C15c 1.20 0.24 240
C6b 1.40 0.28 280 C16a 0.10 0.02 20
C6c 1.90 0.39 380 C16b 0.10 0.02 20
C7a 1.20 0.24 240 C16c 0.80 0.16 160
C7b 0.90 0.18 180 C17a 0.10 0.02 20
C7c 2.10 0.43 420 C17b 0.10 0.02 20
C8a 0.74 0.15 148 C17c 1.40 0.28 280
C8b 0.90 0.18 180 C20a 0.10 0.02 20
C9a 0.74 0.15 148 C20b 1.40 0.28 280
C9b 0.74 0.15 148 C21a 0.10 0.02 20
C9c 0.74 0.15 148 C21b 0.30 0.06 60
C9d 0.74 0.15 148 C21c 0.50 0.10 100
C10a 0.90 0.18 180 C22a 1.40 0.28 280
C10b 0.90 0.18 180 C22b 1.70 0.35 340
C10c 0.40 0.08 8 C23a 1.50 0.30 300

Table 3.4: Load Data
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duration costs duration costs
minutes $/kWh minutes $/kWh

1 0.001 960 26.000
20 0.093 1440 46.000
60 0.428 2880 94.000

240 4.914 4320 186.000
480 15.690

Table 3.5: Interruption Cost Function

Name Failure Failure Failure Repair Repair
Freq. Expect.

;
Mean

;
1/a h/a h

Cables 0113a and 13b 0.01 3 1 300 3
Cables 02a and 02b 0.03 9 1 300 3
Lines 0109 and 10 0.05 15 1 300 3
Lines 0113a and 13b 0.05 15 1 300 3

Table 3.6: Common mode cable failure data

BusBar Failure Connection Failure Repair Repair
Name Freq. Exp.

;
Freq. Exp. Mean

;
1/a h/a 1/a h/a h

11kV Bar 0.002 0.028 1 0.005 0.07 14 3
33kV Bar 0.0025 0.06 1 0.015 0.36 24 3

Table 3.7: Busbar failure data

Name Failure Failure Failure Repair Repair
Frequency Expectancy

;
Mean

;
1/a h/a h

11kV Cable 3.2 107.2 1 33.5 3
33kV Cable 3.2 107.2 1 33.5 3
33kV OHL 2.5 530.0 1 212 3
Transformers 0.02 6.86 1 343 3

Table 3.8: Branch failure data
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State Enumeration Analysis
System Summary
Customer Avg. Interruption Freq. Index CAIFI 0.08 1/Ca
Customer Avg. Interruption Duration Index CAIDI 7.1 h
Avg. Service Unavailability Index ASUI 0.000068
Expected Energy Not Supplied ENS 31 MWh/a
Avg. Customer Curtailment Index ACCI 0.003 MWh/Ca
Expected Interruption Cost EIC 0.036 M$/a
Interrupted Energy Assessment Rate IEAR 1.2 $/kWh

Table 3.9: Overall system reliability indices

State Enumeration Analysis
Load Point Interruptions
Name LPIT LPIF AID LPENS LPEIC ACIF ACIT

Ch/a C/a h MWh/a k$/a 1/a h/a

C13a 440.67 60.58 7.27 2.20 2.54 0.14 1.00
C23a 356.70 32.15 11.09 1.78 2.24 0.11 1.19
C14c 331.71 43.51 7.62 1.66 1.83 0.13 0.98
C10a 284.19 15.97 17.79 1.42 1.87 0.09 1.58
C5c 261.28 22.19 11.77 1.31 1.70 0.05 0.57
C15a 256.51 21.58 11.89 1.28 1.70 0.06 0.71
C7c 256.00 36.60 7.00 1.28 1.59 0.09 0.61
C22a 231.10 18.89 12.23 1.16 1.55 0.07 0.83
C6c 217.13 33.11 6.56 1.09 1.41 0.09 0.57
C4c 185.22 27.88 6.64 0.93 1.19 0.09 0.58
C10b 180.85 19.37 9.34 0.90 1.09 0.11 1.00
C9b 179.72 18.63 9.65 0.90 1.11 0.13 1.21
c9c 179.72 18.63 9.65 0.90 1.11 0.13 1.21
c9d 179.72 18.63 9.65 0.90 1.11 0.13 1.21
C12a 178.32 35.28 5.05 0.89 0.90 0.12 0.59
C7a 166.75 29.18 5.71 0.83 0.94 0.12 0.69
C3c 151.54 12.26 12.36 0.76 0.83 0.06 0.69
C13b 146.30 19.07 7.67 0.73 0.84 0.04 0.33
C17c 134.96 15.89 8.49 0.67 0.85 0.06 0.48
C15c 133.56 29.21 4.57 0.67 0.74 0.12 0.56
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State Enumeration Analysis
Load Point Interruptions, continued
Name LPIT LPIF AID LPENS LPEIC ACIF ACIT

Ch/a C/a h MWh/a k$/a 1/a h/a

C20b 129.12 38.63 3.34 0.65 0.58 0.14 0.46
C10c 122.72 8.59 14.29 0.61 0.78 0.11 1.53
C9a 120.36 18.66 6.45 0.60 0.68 0.13 0.81
C2b 113.12 7.96 14.22 0.57 0.68 0.08 1.09
C5a 112.59 8.64 13.03 0.56 0.74 0.04 0.56
C6a 112.49 13.52 8.32 0.56 0.74 0.07 0.56
C2a 108.76 7.65 14.22 0.54 0.66 0.08 1.09
C4a 100.58 8.68 11.58 0.50 0.67 0.05 0.56
C8b 92.05 9.46 9.73 0.46 0.55 0.05 0.51
C3a 80.96 8.29 9.77 0.40 0.41 0.08 0.75
C16c 73.74 9.08 8.12 0.37 0.48 0.06 0.46
C12c 61.88 25.85 2.39 0.31 0.15 0.11 0.26
C12b 53.36 28.27 1.89 0.27 0.06 0.12 0.22
C2d 45.63 7.87 5.80 0.23 0.18 0.04 0.25
C15b 45.11 17.06 2.64 0.23 0.20 0.12 0.32
C11a 43.05 4.80 8.97 0.22 0.23 0.06 0.54
C21c 34.68 5.59 6.21 0.17 0.19 0.06 0.35
C3b 34.60 9.55 3.62 0.17 0.02 0.08 0.28
C7b 33.12 21.93 1.51 0.17 0.05 0.12 0.18
C11b 32.28 3.60 8.97 0.16 0.17 0.06 0.54
C8a 31.27 18.71 1.67 0.16 0.03 0.13 0.21
C11c 24.51 4.81 5.09 0.12 0.08 0.06 0.31
C22b 23.37 13.73 1.70 0.12 0.03 0.04 0.07
C21b 21.49 3.35 6.41 0.11 0.12 0.06 0.36
C16a 21.43 0.64 33.49 0.11 0.15 0.03 1.07
C17a 21.43 0.64 33.49 0.11 0.15 0.03 1.07
C2c 19.08 6.16 3.10 0.10 0.01 0.08 0.24
C5b 12.20 12.18 1.00 0.06 0.01 0.04 0.04
C21a 10.71 0.32 33.49 0.05 0.07 0.02 0.54
C20a 10.71 0.32 33.49 0.05 0.07 0.02 0.54

Table 3.10: Load point reliability indices
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Figure 3.4: The distribution test system
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Chapter 4

Conclusions

The Weibull-Markov stochastic model that is introduced in this Licenciate
Thesis is 100% compatible with the widely used homogenous Markov model.
It enables all necessary analytic calculations on the component level, includ-
ing the calculation of the component state frequencies and probabilities.

A system that is build from Weibull-Markov components is not a Markov
model but the stationary system again becomes a semi-Markov model. The
calculation of system state probabilities and frequencies can also be per-
formed when the system is not stationary, by combining the contributions of
the components, and does not require the solving of large matrix equations.

An expression has been found for the system state duration distributions.
This expressions allows for a fast assessment of interruption costs during
a state enumerated reliability assessment. Such costs assessment are not
possible with the homogenous Markov model.

At this point in research, it is believed that all reliability assessment methods
that have been developed for the homogenous Markov model can also be
used in combination with the Weibull-Markov model. The Weibull-Markov
models is therefore a good alternative to the homogenous Markov model.
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Appendix A

Glossary of Terms

Stochastic power system component. A power system component is said
to be stochastic when it has a countable set of functional states in
which it may reside, and when the time spend in a state, and the (num-
ber of the) next state are both stochastic quantities.

Stochastic component behavior. The stochastic behavior of a component
is the description of the way in which the component changes from one
state to another. This includes

• all the possible transitions from one state to another

• a description of the stochastic durations for each possible state

• the probabilities for the transitions to other states, given the cur-
rent state.

Component A component is a typical part of the electric power system
which is treated as one single object in the reliability analysis. Ex-
amples are a specific switch, transformer, line, generator, etc. Com-
ponent may reside in different states, such as ’being available’, ’being
repaired’, etc.

System A ‘system’ is short for an electrical power system. A system is
build from components and changes state when one of its components
changes state. The resulting ’system state’ is the combination of all
component states.

Event An event is a transition of a component between its states.
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Outage An component outage is defined as the situation in which the com-
ponent cannot be used, either because it has been taken out of ser-
vice deliberately (‘planned’ outage), either because it has failed (‘un-
planned’, or ‘forced’, outage).

Healthy State A healthy system state is a situation in which no unplanned
outages are present.

Contingency A contingency is a system state in which one or more un-
planned outages are present.

Coherent System Also called “consistent system”. A system in which ad-
ditional outages will never improve the system performance.

Active Failure A failure of a component which activates the automatic pro-
tection system. Active failures are normally associated with short-
circuits.

Adequacy The ability of the electrical power system to meet the load de-
mands under various steady state system conditions.

Availability The fraction of time a component is able to operate as intended,
either expressed as real fraction, or as hours per year.

Base State A system state in which no failures or outages are present.

Contingency A system state in which one or more unplanned outages are
present.

Distribution Function The distribution function for the stochastic quantity
X equals the cumulative density function CDF(x).

CDF(x) = the probability of X to take a value smaller than x.

Failure A failure is an undesirable event of a component.

Failure Effect Analysis (FEA) The electrical steady state and/or dynamic
analysis of the system, possibly combined with switching, generator
rescheduling, or other alleviation techniques, in order to assess the
number of loads which would have to be curtailed.
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Hazard Rate Function The function HRF(x), describing the probability of
a stochastic quantity to be larger than x+dx, given the fact that it is
larger than x, divided by dx. The hazard rate may thus describe the
probability of a element to fail in the next period of time, given the
fact that it is still functioning properly. The hazard rate is often used
to describe ageing and wear out. A famous example is the so-called
“bath-tub” function which describes the probability of a device to fail in
the next period of time during wear-in, normal service time and wear-
out.

Hidden Failure An event of a component which will prevent it from operat-
ing as intended the next time will be called upon.

Interruption An unplanned zero-voltage situation at one or more load points
due to outages in the system.

Maintenance The planned removal of one or more primary components
from the system.

(n-1) system A system for which all relevant components are redundant
units.

(n-k) system A system for which the outage of any k components will never
lead to an interruption in the base state.

Outage The removal of a primary component from the system.

Passive Failure A failure of a component which does not activate the auto-
matic protection system.

Probability Density Function The function PDF(x), describing the proba-
bility of the stochastic quantity to take a value from an interval around
x, divided by the length of that interval. The PDF(x) is the derivative of
the CDF(x).

Redundant Unit A component which outage will never lead to an interrup-
tion in the base state, but for which at least one contingency state
exists for which its additional outage will lead to an interruption.

Repair The restoration of the functionality of a component, either by replac-
ing the component or by repairing it.
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Scheduled Outage The planned removal of a primary component from the
system, i.e. for preventive maintenance.

Security The ability of the system to meet the loads demands during and
after a transient or dynamic disturbance of the system.

Spare Unit A reserve component, not connected to the system, which may
be used as a replacement for a component on outage by switching or
replacing.

Statistic Statistic calculation methods are used to analyze stochastic quan-
tities. A simple example is the method for calculating a mean repair
duration by dividing the total time spend repairing by the number of
repairs performed.

Information obtained by using statistic tools on measured data can be
used to build stochastic models of the observed equipment.

Stochastic A quantity is said to be stochastic when its value is random and
thus unknown. The range of possible values, however, may be known
as well as the likelihood of these possible values. The number of eyes
thrown with a dice is random, the possible outcomes are {1,2,3,4,5,6}
and the likelihood is

�

� for each outcome. For a continuous range of
possible outcomes, the likelihood is a continuous function, known as
the Probability Density Function or “PDF”.
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