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CUIQING DU
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Department of Energy and Environment
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Abstract

The recent developments in semiconductors and control equipment have made the volt-
age source converter based high voltage direct current (VSC-HVDC) feasible. Due to the
use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a num-
ber of potential advantages as compared with classic HVDC, such as short circuit current
reduction, rapid and independent control of active and reactive power, etc. With those
advantages VSC-HVDC will likely be widely used in future transmission and distribu-
tion systems. One such application is to supply industrial systems characterized by high
load density, high requirements on reliability and qualitytogether with high costs after
production interruption.

In this thesis, the scenario of VSC-HVDC connecting two gridsis studied as the
starting point. Two different control strategies are implemented and their dynamic perfor-
mances during disturbances are investigated in the PSCAD/EMTDC program. The sim-
ulation results show that the model can fulfill bi-directional power transfers, AC system
voltage adjustment and fast response control.

The VSC-HVDC model is further investigated for its ability tosupply industrial
systems with and without on-site generation. The frequencycontroller is utilized in the
inverter station to ride through voltage disturbances, where the frequency of the VSC out-
put voltage is slightly decreased and thereby the inertia energy of rotating masses in the
system is exploited. The motivation for choosing this strategy is that the processing indus-
tries are much more sensitive to voltage drops than to frequency deviations. Simulation
results show that a VSC-HVDC applied to an industrial system significantly improves the
power quality of the industrial plant during voltage disturbances. Furthermore, the use of
the proposed frequency controller can increase the ride-through capability of the system.
However, the current limit of the converter, the power production level of the on-site gen-
eration and the generator size significantly influence its ability to mitigate voltage dips.

Keywords: VSC-HVDC, vector controller, outer controller, current limit, voltage dips,
industrial power systems.
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Chapter 1

Introduction

This chapter describes the background of the thesis and briefly reviews related research.
The objective of the thesis, main contributions of the work and the outline of the thesis are
also presented. Finally, the project publications are listed.

1.1 Background

Industrial power systems are characterized by high concentration of load. Many indus-
trial loads are very sensitive to voltage dips and other disturbances originating from the
grid [1, 2]. A paper machine could be affected by disturbances of only 10% voltage vari-
ation from nominal lasting as short as 100ms [3]. Voltage sags to 85 to 90% of nominal
lasting as short as 16 ms have triggered immediate outages ofcritical industrial processes
as mentioned in some reports [4]. Equipment mal-operation due to voltage dips and other
disturbances can lead to high cost. An interrupted automotive assembly line costed one
U.S. manufacturer$250000 a month until it was corrected. Interruptions to semiconduc-
tor hatch processing cost$30000-$l million per incident [5]. Therefore, electric power
systems are faced with the challenge of providing high-quality power to industrial loads.

Power-electronic solutions have been suggested to solve specific power quality
problems in industrial systems. An uninterruptible power supply (UPS) can provide ride-
through capability against voltage interruptions and dipsfor small loads [6]. A dynamic
voltage restorer (DVR) can alleviate a range of dynamic powerquality problems such as
voltage dips and swells [7]. A static synchronous compensator (STATCOM) has the abil-
ity to either generate or absorb reactive power at a faster rate than classical solutions. This
allows for the mitigation of flicker and alleviation of stability problems [8,9].

High voltage direct current (HVDC) transmission is a technology based on high
power electronics and used in electric power systems for long distances power transmis-
sion, connection of non-synchronized grids and long submarine cable transmission [10,
11]. For many years, HVDC based on thyristor commutated converters was used [12,13].
With the development of semiconductors and control equipment, HVDC transmission
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Chapter 1. Introduction

with voltage source converters (VSC-HVDC) based on IGBTs is today possible and sev-
eral commercial projects are already in operation [14–17].The use of such DC links
provides possible new solution to power-quality related problems in industrial power sys-
tems.

1.2 Review of related research

The topologies of two converters in the VSC-HVDC system have been studied in [17–21].
The two-level bridge is the simplest circuit configuration and there are several commis-
sioned projects that use this topology [15,16]. Recent practices have extended the princi-
ple to multilevel converters by the use of capacitors and diodes to increase the number of
levels. The voltages can be clamped for different levels such as a three-level neutral point
clamped voltage source converter [14, 18, 22] and a three-level flying capacitor voltage
source converter [19, 21]. These multilevel converters provide improved waveform qual-
ity and reduced power losses. In [23] it is stated that the typical losses of the two-level and
three-level VSC, operating at 1 pu power, are larger than3% and between1% − 2%, re-
spectively. However, due to the increased complexity in converter design with multilevel
converters the two-level converter technology is still themost commonly used.

To fully exploit the capabilities of the VSC-HVDC proper control algorithms are
needed. In a number of papers, such as [18, 22, 24, 25], different control systems of the
VSC-HVDC have been analyzed. In [18] an inner current controlloop for the use together
with a carrier based PWM is presented. The inner current control loop is designed for a
digital control implementation and for a dead-beat controlof the converter current when
the converter is connected to a very strong AC network. A grid-connected VSC using a
discrete vector current controller is investigated in [24]. The influences of an incorrect
controller tuning and grid voltage harmonics on current frequency responses at an operat-
ing point are also addressed. Moreover, some specific aspects of the VSC-HVDC are also
studied in the literature. For instance, an analytical model of the power control terminal
of a VSC-HVDC system is also analyzed and presented in [26–28]. The contribution of
VSC-HVDC to short circuit currents is investigated in [29]. The inter-area decoupling
and local area damping by the VSC-HVDC are studied in [30]. There are also some fur-
ther possibilities for the improvement of VSC-HVDC. In [31] a static synchronous series
compensation (SSSC) is embedded in the VSC-HVDC station to improve the dynamic
characteristics of the VSC-HVDC link.

One of the attractive applications of the VSC-HVDC is that it can be used to connect
a wind farm to an AC grid to solve some potential problems suchas voltage flicker [32].
In [33] a technical and economical analysis is presented to evaluate the benefits and draw-
backs of grid connected offshore wind farms through a DC link. In [34] the behavior of a
VSC-HVDC system is studied, when feeding a weak AC network with power produced
from an offshore wind farm (WF) of induction generators. The VSC-HVDC connect-
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1.3. Objective of the thesis and main contributions

ing a wind farm to an AC system has also been implemented in some commissioned
projects [15, 35, 36]. Two commercial VSC-HVDC transmissionsystems projects, Got-
land and Tjæreborg, are feeding onshore wind power to the AC system. These projects
have shown that VSC-HVDC is capable of handling wind power andreacting rapidly
enough to counteract voltage variations in an excellent way. In February 2005 the world’s
first offshore VSC-HVDC transmission was successfully commissioned [36]. Overall, the
theoretical investigations and experiences confirm that the VSC-HVDC is a promising
concept for connecting large wind farms to AC systems.

A multiterminal VSC-HVDC can be an attractive alternative tothe conventional
AC system. The possible implementation of a multiterminal HVDC system and various
aspects related to the multiterminal HVDC system have been studied [37–42]. The relia-
bility of a hybrid multiterminal HVDC sub-transmission system is evaluated in [38]. The
ability of the multiterminal VSC-HVDC system to improve power quality and how to deal
with DC overvoltages during loss of a converter in the multiterminal VSC-HVDC system
is investigated in [43] and [40]. The protection of multiterminal VSC-HVDCs against DC
faults is also studied in [44].

In the literature there are some other applications of the VSC-HVDC technology.
In [45] a study of SSTI (subsynchronous torsional interaction) related to VSC-HVDC is
presented. One DC prototype system has been simulated to investigate the opportunities
and challenges in industrial systems [46].

1.3 Objective of the thesis and main contributions

The main objective of this thesis is to assess the potential and limitation of the use of
VSC-HVDC in industrial power systems. The control algorithms of the VSC-HVDC will
be designed and the dynamics of industrial systems with VSC-HVDC infeed will be ana-
lyzed.

The main contributions are: design of frequency control strategies for a VSC-HVDC
to increase the ride-through capability for the VSC-HVDC supplied industrial systems in
case of voltage disturbances, investigation of the impact of the converter current limit on
the system and study of the VSC-HVDC dynamic performance for industrial plants with
and without on-site generation. The details are described as follows:

• a control scheme for a VSC-HVDC connecting two established ACsystems is stud-
ied. Two different control strategies, AC voltage control and reactive power control,
are tested and compared during step changes and faults. The investigation focuses
on the ability of the VSC-HVDC to keep in operation and how the system recovers
after fault clearing.

• the dynamic performance of a VSC-HVDC system under unbalanced faults in the
supplying AC system is investigated. Different control algorithms, such as an inner
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Chapter 1. Introduction

current controller, a controller with LCL filter and positive-sequence and negative-
sequence current controllers, are presented and analyzed for the most common un-
balanced fault, i.e. single-line-to-ground fault (SLGF).

• the thesis describes different frequency controllers and compares the dynamics of a
VSC-HVDC supplied industrial plant when different types of frequency controllers
are implemented in the inverter station.

• the thesis studies the AC voltage/frequency control of the VSC-HVDC to supply
industrial installations. During the investigation the moment of inertia of rotating
masses, load characteristics and current limits are included and their effects on the
VSC-HVDC’s ability to ride through voltage disturbances are investigated during
faults and motor starts.

• the thesis investigates a VSC-HVDC supplying an industrial plant with on-site
generation. A PI frequency controller and a droop frequencycontroller are imple-
mented in the VSC-HVDC control system. The dynamics of the system are inves-
tigated and compared when the two different frequency controllers are used and
when the turbine operates in three different modes, i.e. constant power mode, droop
frequency control with and without a reheat model.

1.4 Outline of the thesis

Chapter 2 presents classic HVDC and VSC-HVDC. In this chapter the arrangements of
the HVDC system, the configurations, the advantages and applications of classic HVDC
and VSC-HVDC are described. Furthermore, the structure of the VSC-HVDC, including
its converter, harmonic filter and DC capacitor, is described in detail. The operation of the
VSC-HVDC is also explained.

Chapter 3 focuses on the control system of the VSC-HVDC. The overall control
structure of the VSC-HVDC is presented. A mathematical modelof the control system is
described in detail. Different outer controllers are also presented.

Chapter 4 discusses some simulations concerning the VSC-HVDCbetween two
grids and makes the comparison between the complete and simplified VSC-HVDC mod-
els. In this chapter step changes, balanced and unbalanced faults are simulated with the
complete and simplified models to evaluate and verify the proposed control system of the
VSC-HVDC. Moreover, the improvement of the system performance during unbalanced
faults is investigated. In all simulations the current limit is considered. Some of the results
presented in[Paper A] and[Paper B] are highlighted in this chapter.

Chapter 5 focuses on the simulation of VSC-HVDC supplied industrial power sys-
tems with and without on-site generation. Balanced faults onthe grid side, load step
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changes and motor starts are investigated. Different frequency control strategies are also
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Chapter 2

High Voltage Direct Current

This chapter presents general aspects of HVDC transmission. The configurations of HVDC
and two different HVDCs, i.e. classic HVDC and VSC-HVDC, are described.

2.1 Introduction

The HVDC technology is a high power electronics technology used in electric power sys-
tems. It is an efficient and flexible method to transmit large amounts of electric power
over long distances by overhead transmission lines or underground/submarine cables. It
can also be used to interconnect asynchronous power systems[48]. The first commer-
cial HVDC connecting two AC systems was a submarine cable link between the Swedish
mainland and the island of Gotland. The link was rated 20MW, 100kV, and was commis-
sioned in 1953 [49,50]. Nowadays, the HVDC is being widely used all around the world.
Until recently HVDC based on thyristors, which is called traditional HVDC or classic
HVDC, has been used for conversion from AC to DC and vice versa.

Recently a new type of HVDC has become available. It makes use of the more ad-
vanced semiconductor technology instead of thyristors forpower conversion between AC
and DC. The semiconductors used are insulated gate bipolar transistors (IGBTs), and the
converters are voltage source converters (VSCs) which operate with high switching fre-
quencies (1-2kHz) utilizing pulse width modulation (PWM). The technology is commer-
cially available as HVDC Light [51] orHVDCPLUS (Power Link Universal Systems) [52].
In this thesis the new technology will be referred to as VSC-HVDC (VSC based HVDC).
A number of underground transmissions, up to 330 MW, are in commercial operation or
being built [15, 35, 53, 54]. Today a maximum power capacity of 1000 MW at± 300 kV
DC is commercially available [55]. In this chapter a brief overview of classic HVDC is
presented. The topology of the VSC-HVDC is discussed in detail. Design considerations
and modelling aspects of the VSC-HVDC are addressed.
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Chapter 2. High Voltage Direct Current

2.2 Configurations of HVDC

HVDC converter bridges together with lines or cables can be arranged in a number of
configurations as shown in Figs. 2.1 and 2.2 [11,49,50,56]:

I . Monopolar HVDC system
In the monopolar configuration, two converters are connected by a single pole line
and a positive or a negative DC voltage is used. In Fig. 2.1(a)there is only one
insulated transmission conductor installed and the groundor sea provides the path
for the return current. For instance, the Konti-Skan (1965)project and Sardinia-
Italy (mainland) (1967) project use monopolar links [11]. Alternatively, a metallic
return conductor may be used as the return path.

II . Bipolar HVDC system
This is the most commonly used configuration of HVDC transmission systems [11].
The bipolar configuration, shown in Fig. 2.1(b), uses two insulated conductors as
positive and negative poles. The two poles can be operated independently if both
neutrals are grounded. The bipolar configuration increasesthe power transfer ca-
pacity. Under normal operation, the currents flowing in bothpoles are identical
and there is no ground current. In case of failure of one pole power transmission
can continue in the other pole which increases the reliability. Most overhead line
HVDC transmission systems use the bipolar configuration [11].

III . Homopolar HVDC system

In the homopolar configuration, shown in Fig. 2.1(c), two or more conductors have
the negative polarity and can be operated with ground or a metallic return. With two
poles operated in parallel, the homopolar configuration reduces the insulation costs.
However, the large earth return current is the major disadvantage [57].

IV . Back-to-back HVDC system
This is the common configuration for connecting two adjacentasynchronous AC
systems. Two converter stations are located at the same siteand transmission line
or cable is not needed. A block diagram of a back-to-back system is shown in
Fig. 2.2(a). The two AC systems interconnected may have the same or different
nominal frequencies, i.e. 50Hz and 60Hz. Examples of such system configuration
can be found in Japan and South America [58].

V. Multiterminal HVDC system
In the multiterminal configuration, three or more HVDC converter stations are geo-
graphically separated and interconnected through transmission lines or cables. The
system can be either parallel, where all converter stationsare connected to the
same voltage as shown in Fig. 2.2(b) or series multiterminalsystem, where one

8



2.3. Classic HVDC

or more converter stations are connected in series in one or both poles as shown in
Fig. 2.2(c). A hybrid multiterminal system contains a combination of parallel and
series connections of converter stations. Applications ofmultiterminal HVDCs in-
clude the Sardinia-Corsica-Italy (SACOI) connection, the Pacific Intertie in USA
and the Hydro Quebec - New England Hydro from Canada to USA [59,60].

(a)

 
 

No current

(b)

 
 

2Id

(c)

  

Fig. 2.1 Monopolar (a), bipolar (b) and homopolar (c) HVDC systems.

2.3 Classic HVDC

2.3.1 Components of classic HVDC

A bipolar classic HVDC system, shown in Fig. 2.3, consists ofAC filters, shunt capacitor
banks or other reactive-compensation equipment, converter transformers, converters, DC
reactors, DC filters, and DC lines or cables [12].
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Chapter 2. High Voltage Direct Current

    

  

 

(a)

  

 

(b)

  

 

(c)

Fig. 2.2 Back-to-back (a), parallel multiterminal (b) and series multiterminal (c) HVDCsystems.

Converters
The HVDC converters are the most important part of an HVDC system. They perform
the conversion from AC to DC (rectifier) at the sending end andfrom DC to AC (in-
verter) at the receiving end. HVDC converters are connectedto the AC system through
transformers. The classic HVDC converters are current source converters (CSCs) with
line-commutated thyristor switches. A six pulse valve bridge, shown in Fig. 2.4, is the ba-
sic converter unit of classic HVDC for both conversions, i.e. rectification and inversion.
A twelve pulse converter bridge can be built by connecting two six pulse bridges. The
bridges are then connected separately to the AC system through transformers, one with
Y-Y winding structure and the other with Y-∆ winding structure, as shown in Fig. 2.3. In
this way the 5th and 7th harmonic currents through the two transformers are in opposite
phase. This significantly reduces the distortion in the AC system caused by the HVDC
converters [61,62].
Transformers
The transformers connect the AC network to the valve bridgesand adjust the AC voltage
level to a suitable level for the converters. The transformers can be of different design
depending on the power to be transmitted and possible transport requirements [12].
AC-side harmonic filters
The HVDC converters produce harmonic currents on the AC sideand the harmonic cur-
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2.3. Classic HVDC

Shunt capacitors

or other reactive

equipment

AC bus

Smoothing

reactor

Converter

AC

filter

DC filter

DC line

or cable

Transformer
Q

Q
P

U/UU/D

Fig. 2.3 A configuration for a classic HVDC system.

Fig. 2.4 Configuration of a six pulse valve group.
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Chapter 2. High Voltage Direct Current

rents entering into the connected AC network are limited by AC filters. For instance, AC
filters installed on the AC side of a 12-pulse HVDC converter are tuned such that the11th,
13th, 23th and25th harmonic currents are limited. In the conversion process the convert-
ers consume reactive power which is partly compensated in the filter banks and the rest is
provided by capacitor banks.
DC filters
The HVDC converters produce ripple on the DC voltage. Voltage ripple causes the inter-
ference to telephone circuits near the DC line. DC filters canbe used to reduce the ripple.
Usually no DC filters are needed for pure cable transmission nor for back-to-back HVDC
stations. However, it is necessary to install DC filters if overhead lines are used in the
transmission system. The filter types used on the DC side are tuned filters and active DC
filters [11,63].
HVDC cables or overhead lines
HVDC cables are normally used for submarine transmission. No serious length limitation
exists for HVDC cables. For a back-to-back HVDC system no DC cable or overhead line
is needed. For connections over land overhead lines are typically used. However, due to
environmental concerns the tendency is to also use cables for connections over land.

2.3.2 Advantages and applications of classic HVDC

Advantages of classic HVDC

It is important to remark that an HVDC system offers not only the capability to transfer
electrical power but also a number of advantages as comparedto AC transmission [11,12]
such as:

• no limits in transmitted distance. This is valid for both overhead lines and subma-
rine/underground cables.

• fast and accurate control of power flow which improves the power system stability.

• direction of power flow can be changed quickly.

• an HVDC link does not increase the short-circuit power in thepoint of connection.
This implies that it will not be necessary to change other equipment in the existing
network from the viewpoint of short-circuit power.

• HVDC can carry more power for a given size of conductor as compared to the AC
system, which implies that when transmitting the same amount of active power, the
need for right-of-ways (RoWs) is less for an HVDC than for an AC connection.

• power can be transmitted between two AC systems operating atdifferent nominal
frequencies or at the same frequency without being synchronized.
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2.4. VSC-HVDC

Applications of classic HVDC

The purpose of the first classic HVDC application was to provide point to point electri-
cal power interconnections between asynchronous AC power networks. Other applica-
tions [56] where HVDC transmission is suitable include:

• delivery of electrical power from large energy sources overlong distance, e.g. the
connection of remote hydro-stations to load centers.

• import of power into congested load areas, where it is not possible to build new gen-
erations to meet the load demand. Underground DC cable transmission is usually
used in such application.

• increasing the capacity of existing AC transmission by DC transmission, which
eliminates the need of new transmission RoWs.

• power flow control. In AC networks the desired power flow control can be difficult
to accomplish. Power marketers and system operators may require the power flow
control capability provided by HVDC transmission.

2.4 VSC-HVDC

With continued load growth and the difficulty of obtaining RoWsfor new transmission
lines, the existing transmission systems are pushed towards their limits. This will deteri-
orate the power quality and have a negative impact on the network stability. Therefore, it
is necessary to adapt existing transmission system to increase the power density on the
existing RoWs. The use of VSC-HVDC transmission has the potential to be a part of the
solution to these anticipated problems.

The VSC-HVDC is a new DC transmission system technology. The valves are built
by IGBTs and PWM is used to create the desired voltage waveform.With PWM it is
possible to create any waveform, any phase angle and magnitude of the fundamental fre-
quency component. This high controllability allows for a wide range of applications.

2.4.1 Components of VSC-HVDC

A typical VSC-HVDC system, shown in Fig. 2.5, consists of AC filters, transformers,
converters, phase reactors, DC capacitors and DC cables [64].
Converters
The converters are VSCs employing IGBT power semiconductors,one operating as a
rectifier and the other as an inverter. The two converters areconnected either back-to-
back or through a DC cable, depending on the application. This is described in detail in
Section 2.4.2.
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Transformers
Normally, the converters are connected to the AC system via transformers. The most
important function of the transformers is to transform the voltage of the AC system to a
level suitable for the converter.
Phase reactors
The phase reactors are used for controlling both the active and the reactive power flow by
regulating currents through them. The reactors also function as AC filters to reduce the
high frequency harmonic contents of the AC currents which are caused by the switching
operation of the VSCs.
AC filters
The AC voltage output contains harmonic components, causedby the switching of the
IGBTs. The harmonics emitted into the AC system have to be limited to prevent them
from causing malfunction of AC system equipment or radio andtelecommunication dis-
turbances. High-pass filter branches are installed to mitigate these high order harmonics.
With VSC converters there is no need to compensate any reactive power and the cur-
rent harmonics on the AC side are related directly to the PWM frequency. Therefore, the
amount of filters in this type of converters is reduced as compared with line commutated
converters. This is described in detail in Section 2.4.3.
DC capacitors
On the DC side there are two capacitor stacks with the same size. The size of these capac-
itors depends on the required DC voltage. The objective of the DC capacitors is to provide
an energy buffer to keep the power balance during transientsand reduce the voltage ripple
on the DC side. This is described in detail in Section 2.4.4.
DC cables
The cable used in the VSC-HVDC applications is a new developedtype where the insula-
tion is made of an extruded polymer that is particularly resistant to DC voltage. Polymeric
cables are the preferred choice for HVDC mainly because of their mechanical strength,
flexibility and low weight [65].

DC cable 

Converter

AC
Filter

Transformer
AC 

system
AC 

system

Phase reactor

AC
Filter

Q P Q

DC 
capacitor

Fig. 2.5 A VSC-HVDC system.
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2.4.2 Converters

So far the converters are composed of a number of elementary converters, i.e. three-phase,
two-level, six-pulse bridges or three-phase, three-level, twelve-pulse bridges, as shown in
Fig. 2.6. Both topologies have been used in the commissioned projects [15–17].

(a) Two-level VSC (b) Three-level VSC

Fig. 2.6 The topology of the VSC.

The two-level bridge is the simplest circuit configuration that can be used for build-
ing up a three-phase forced commutated VSC bridge. It has been widely used in many
applications at a wide range of power levels. As shown in Fig.2.6, the two-level con-
verter consists of six valves. It is capable of generating the two voltage levels−0.5·uDC

and+0.5·uDC (whereuDC is the DC voltage). The three-level converter comprises four
valves in one arm of the converter. It can generate the resulting voltage on the AC termi-
nal comprising three voltage levels−0.5·uDC, 0 and+0.5·uDC. In order to use the two or
three-level bridge in high power applications series connection of devices may be neces-
sary and then each valve will be built up of a number of series connected turn-off devices
and anti-parallel diodes. The number of devices required isdetermined by the rated power
of the bridge and the power handling capability of the switching devices.

2.4.3 AC filters

As described above, the currents and the voltages at the inverter and rectifier are not sinu-
soidal due to the commutation valve switching process. These non-sinusoidal current and
voltage waveforms consist of the fundamental frequency AC component plus higher-order
harmonics. Passive high-pass AC filters are used in the VSC-HVDC to filter the high har-
monics. Hence, sinusoidal line currents and voltages can beobtained from the transformer
secondary sides. Furthermore, the reactive power compensation may be accomplished by
high-pass filters.

As stated in [66], a PWM output waveform contains harmonicsM ′fc±N ′f1, where
fc is the carrier frequency,f1 is the fundamental grid frequency.M ′ andN ′ are integers,
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and the sumM ′ + N ′ is an odd integer. In addition to the fundamental frequency com-
ponent, the spectrum of the output voltages contains components around the carrier fre-
quency of the PWM and multiples of the carrier frequency. Thisis illustrated in Table 2.1,
where a summary of the output voltage harmonics obtained by triangular carrier PWM
with the frequency modulation ratiomf equal to 39. Here,mf is defined as:

mf =
fc

f1

(2.1)

The selection ofmf depends on the balance between switching losses and harmonic
losses. A higher value ofmf (i.e. a higher number of commutations per second) increases
the switching losses but reduces the harmonic losses.

Table 2.1: Spectrum of the output voltage

M ′ 1 2 3
Harmonic 39f1 78f1 117f1

39f1 ± 2fc 78f1 ± 1fc 117f1 ± 2fc

39f1 ± 4fc 78f1 ± 3fc 117f1 ± 4fc

39f1 ± 6fc 78f1 ± 5fc 117f1 ± 6fc

etc. etc. etc.

From Table 2.1, the harmonic contents can be obtained. The highermf , the higher
the frequency of the lowest order harmonics produced. Therefore, with the use of PWM,
passive high-pass damped filters are selected to filter the high order harmonics. Normally
second and third-order passive high-pass filters shown in Fig. 2.7 are used in HVDC
schemes [11].

When designing the high damping filters the quality factorQ is chosen to obtain
the best characteristic over the required frequency band. The typical value of the quality
factorQ is between 0.5 and 5 [11].

2.4.4 Design of DC voltage and DC capacitors

For the converter to be capable of controlling the input current waveforms to be sinu-
soidal, the nominal DC voltage should be appropriately chosen. As mentioned in sub-
section 2.4.2, a two-level converter is able to generate twovoltage levels−0.5·uDC and
+0.5·uDC. Therefore, the DC voltage should be larger than 1.634 timesthe root mean
square (rms) AC voltage [61].

The design of DC side capacitor is an important part for the design of an HVDC
system. Due to PWM switching action in the VSC-HVDC, the currentflowing to the DC
side of a converter contains harmonics which will result in aripple on the DC side voltage.
The magnitude of the ripple depends on the DC side capacitor size and the switching
frequency.
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(a) Second-order filter (b) Third-order filter

Fig. 2.7 Passive high-pass filter.

Here, a small DC capacitorCDC can be used, which should theoretically result in
a faster converter response. It can also provide an energy storage in order to control the
power flow. The DC capacitor size is characterized as a time constantτ , defined as the
ratio between the stored energy at the rated DC voltageUDCN and the nominal apparent
power of the converterSN:

τ =
1
2
CDCU2

DCN

SN

(2.2)

The time constant is equal to the time needed to charge the capacitor from zero to rated
voltageUDCN if the converter is supplied with a constant active power equal toSN [67,68].
The time constantτ can be selected to be smaller to satisfy small ripple and small transient
overvoltages on the DC voltage. This will be verified in the simulations. The relatively
small time constant allows fast control of active and reactive power.

2.4.5 Operation of VSC-HVDC

The operation of a VSC-HVDC can be explained by considering each terminal as a volt-
age source connected to an AC transmission network via series reactors.

Fig. 2.8 shows a simplified single line diagram of the converter connected to an
AC system. As shown in the figure, the AC system and the controlled voltage source are
connected via the phase reactor. The converter is modelled as a controlled voltage source
uv at the AC side and a controlled current sourceiDC at the DC side. The current source
can be calculated based on the power balance at the AC and DC side of the converter. The
controlled voltage source can be derived from the control system of the converter where
the amplitude, the phase and the frequency can be controlledindependently of each other.
The controlled voltage source can be described by the following equation [66]:

uv =
1

2
uDCM sin(ωt + δ) + harmonic terms (2.3)
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whereM is the modulation index which is defined as the ratio of the peak value of the
modulating wave and the peak value of the carrier wave, i.e. the DC voltage.ω is the
frequency,δ is the phase shift of the output voltage. VariablesM , ω andδ can be adjusted
by the VSC controller. As a result, the voltage drop (∆V shown in Fig. 2.8) across the
reactor can be varied to control the active and reactive power flows.

Fig. 2.8 also shows the corresponding fundamental frequency phasor representation
for a VSC operating as a rectifier and absorbing reactive power from the AC system.
In this case the VSC output voltage has a smaller amplitude and is phase lagged with
respect to the AC system. The active power flow between the AC system and the converter

AC 
system

Converter

(a)

Re

Im

(b)

δ
fu

recP invP

V∆

vu
vi DCi

DCu

DCC2

loadi

fu

vi vu
V∆

vv XR ,
ff QP ,

Fig. 2.8 Equivalent circuit (a) and phasor diagram (b) of the converter connected to an AC system.

can be controlled by changing the phase angle (δ) between the fundamental frequency
voltage (uv) generated by the VSC and the AC voltage (uf) on the secondary side of the
transformer [64, 69]. The active power is calculated according to (2.4) neglect the losses
of the phase reactor.

Pf =
ufuv sin δ

Xv

(2.4)

The reactive power is determined by the amplitude ofuv [64,69] and calculated according
to (2.5).

Qf =
uf(uf − uv cos δ)

Xv

(2.5)

In a VSC-HVDC connection the active power on the AC side is equal to the active
power transmitted from the DC side at steady state (losses neglected). This can be fulfilled
if one of the two converters controls the active power transmitted while the other converter
controls the DC voltage. The reactive power generation and consumption can be used
to control the AC voltage of the network. Fig. 2.9 illustrates the active/reactive power
capabilities of the VSC-HVDC system in a P-Q diagram for two different voltagesuv1

anduv2, whereuv1 > uv2. Several important properties of the VSC-HVDC link can be
seen from this figure [52,70]. For instance, the VSC-HVDC is able to operate at any point
within the circle. However, since the radius of the VSC-HVDC represents the converter
MVA rating which equals to the production of the maximum current and the actual AC
voltage, the MVA capacity will decrease proportionally to the voltage drop.
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P

Q

12 vv uu <

lim2 iuv ∗

lim1 iuv ∗

Fig. 2.9 PQ diagram for the VSC-HVDC.

Fig. 2.10 illustrates the active and reactive power flow for the grid and the VSC
transmission system in a power circle diagram. From Fig. 2.10, it can be obtained that
the crossing between the capability curve of the VSC transmission and the grid circle
indicates the stable operation for that particular voltagelevel. Furthermore, Fig. 2.10 also
shows the change of the transferred active and reactive power flow during voltage dips.
It can be obtained that the stable transferred active power is reduced (i.e.PAC2 < PAC1)
when the grid voltage drops.

(b)(a)

P

Q

v

vf

X

uu

v

v

X

u2

−

δ

limiuv

Fig. 2.10 The power circle plane for a VSC transmission in series with an AC network atnormal
operation (a) and during faults (b).
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2.4.6 Advantages and applications of VSC-HVDC

The main operation difference between classic HVDC and VSC-HVDC is the higher con-
trollability of the latter. This leads to a number of potential advantages and applications,
where some are given below [12,65,71]:

- independent control of active and reactive power without extra compensating equip-
ment. With the use of PWM, the VSC-HVDC can control both active and reactive
power independently. While the transmitted active power is kept constant the AC
voltage controller can control the voltage in the AC network. Reactive power gener-
ation and consumption of a VSC-HVDC converter can be used for voltage control
to compensate the needs of the connected network within the rating of a converter.

- mitigation of power quality disturbances. The reactive power capabilities of the
VSC-HVDC can be used to control the AC network voltage and thereby contribute
to an enhanced power quality. Furthermore, the faster response, due to increased
switching frequency (PWM), offers new levels of performanceregarding power
quality control such as flickers and harmonics. Power quality problems are issues
of priority for owners of industrial plants, grid operatorsand for the public [72].

- reduced risk of commutation failures. Disturbances in theAC system may lead
to commutation failures in a classic HVDC system. As the VSC-HVDC uses self-
commutating semiconductor devices, it is no longer necessary to present a sufficiently-
high AC voltage. This significantly reduces the risk of commutation failures and
extends the application of the VSC-HVDC for stability control.

- communication not needed. As the control systems on the rectifier and inverter
sides operate independently, they do not depend on a telecommunication connec-
tion, which in turn improves the speed and the reliability ofthe controller.

- feeding islands and passive AC networks. The VSC converteris able to create its
own AC voltage at any predetermined frequency without the presence of rotating
machines. Therefore, it may be used to supply industrial installations or to connect
large wind farms.

- multiterminal DC grid. The VSC converters are suitable forcreating a DC grid with
a number of converters since little coordination is needed between the VSC-HVDC
converters. One potential application of multiterminal DCgrids is to provide power
supply to city centers.
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2.5 Summary

In this chapter an overview of the HVDC system has been presented. Different configu-
rations of the HVDC have been described. The function of eachcomponent, advantages
and applications of the classic HVDC and the VSC-HVDC have been presented in detail.
Moreover, the design and operation of the VSC-HVDC system have been discussed. It
can be concluded that the bipolar HVDC link is the most commonHVDC configuration.
The higher controllability of the VSC-HVDC leads to many new potential advantages and
applications, which makes it more attractive for the future.
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Chapter 3

Control System of the VSC-HVDC

This chapter describes a cascaded control system of the VSC-HVDC. Different vector
controllers and outer controllers are presented.

3.1 Introduction

With classic HVDC the reactive power cannot be controlled independently of the ac-
tive power. With VSC-HVDC there is an additional degree of freedom. As described in
Chapter 2, the VSC-HVDC can control the active and reactive power independently. The
reactive power can be controlled separately in each converter by the required AC voltage
or set manually. The active power flow can be controlled by theDC voltage, the variation
of frequency at the AC side or set manually. This means that the active power flow, the
reactive power flow, the AC voltage, the DC voltage and the frequency can be controlled
when using VSC-HVDC.

The control system of the VSC-HVDC is a cascade control system, it typically
consists of a faster vector controller. Furthermore, the vector controller is completed by
additional controllers which supply the references for thevector controller. Thus, the vec-
tor controller will be the inner loop and additional controllers will be the outer loop.
In this thesis the additional controllers will be referred to as the outer controllers. The
outer controllers include the DC voltage controller, the ACvoltage controller, the active
power controller, the reactive power controller or the frequency controller. For example,
as shown in Fig. 3.1, either side of the link can choose between AC voltage controller
and reactive power controller. Each of these controllers generates a reference value for
the vector controller.

Obviously not all controllers can be used at the same time. The choice of different
kinds of controllers will depend on the application and may require advanced power sys-
tem studies. For example, the VSC-HVDC can control frequencyand AC voltage if the
load is a passive system, the VSC-HVDC can control AC voltage and active power flow
if the load is an established AC system. However, since the active power flow into the DC
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link must be balanced, the DC voltage controller is necessary in order to achieve active
power balance. Active power out from the DC link must equal the active power into the
DC link minus the losses in the DC link. Any difference would result in a rapid change of
the DC voltage. The other converter can set any active power value within the limits for
the system.

In this chapter the vector controller and various outer controllers will be described
in detail. Simulation results will be presented in the next chapter.

Converter 1 
(Rectifier)

Grid

Converter 2 
(Inverter)

PCC

DC voltage control mode 
+

AC voltage or reactive power control mode

Frequency or active power control mode
+

AC voltage or reactive power control mode

Fig. 3.1 Overall control structure of the VSC-HVDC.

3.2 Vector controller

The vector controller is based on the basic relationship of the circuit shown in Fig. 3.2
and can be implemented in thedq-coordinate system. In order to have a detailed overview
of the vector controller, its derivation is presented in this section.

PCC

VSC

Industrial 
power 
system

AC
Filter

V∆
DCu

DCC2
vu vv LR ,

vi fu

fC

dL dR

trtr LR ,

tri

PCCu

Fig. 3.2 The inverter station of the VSC-HVDC.

Fig. 3.3 shows the frequency response from the converter voltageuv to the filter-
bus voltageuf and from the converter voltageuv to the current through transformeritr
with and withoutRd and Ld. It is shown that the same responses at low frequencies
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are achieved both with and withoutRd andLd which means that the AC filter is purely
capacitive at low frequencies. Therefore, the control algorithms, described in [73–75], can
be used in this application. The AC filter is considered as a pure capacitor, i.e.Rd andLd

neglected, in the following derivation of the vector controller.
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Fig. 3.3 Frequency response ofuf/uv (a) anditr/uv (b) with [dash-dotted] and withoutRd, Ld
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From the circuit shown in Fig. 3.2, the voltage over the transformer, the current
through the AC filter and the voltage over the phase reactor can be obtained in the three-
phase system:

u
(abc)
f (t) − u

(abc)
PCC (t) = Ltr

d

dt
i
(abc)
tr (t) + Rtri

(abc)
tr (t) (3.1)

i(abc)
v (t) − i

(abc)
tr (t) = Cf

d

dt
u

(abc)
f (t) (3.2)

u(abc)
v (t) − u

(abc)
f (t) = Lv

d

dt
i(abc)
v (t) + Rvi

(abc)
v (t) (3.3)

According to (3.1), (3.2) and (3.3) the following differential equations are derived:

d

dt
i
(abc)
tr (t) = −

Rtr

Ltr

i
(abc)
tr (t) +

1

Ltr

(u
(abc)
f (t) − u

(abc)
PCC (t)) (3.4)

d

dt
u

(abc)
f (t) = −

1

Cf

i
(abc)
tr (t) +

1

Cf

i(abc)
v (t) (3.5)

d

dt
i(abc)
v (t) = −

Rv

Lv

i(abc)
v (t) +

1

Lv

(u(abc)
v (t) − u

(abc)
f (t)) (3.6)

By using the transformation fromabc to αβ, i.e.x(αβ) =
√

2
3
[x(a) + x(b)ej 2π

3 + x(c)ej 4π

3 ],
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(3.4), (3.5) and (3.6) can be transformed to theαβ-coordinate system as:

d

dt
i
(αβ)
tr (t) = −

Rtr

Ltr

i
(αβ)
tr (t) +

1

Ltr

(u
(αβ)
f (t) − u

(αβ)
PCC(t)) (3.7)

d

dt
u

(αβ)
f (t) = −

1

Cf

i
(αβ)
tr (t) +

1

Cf

i(αβ)
v (t) (3.8)

d

dt
i(αβ)
v (t) = −

Rv

Lv

i(αβ)
v (t) +

1

Lv

(u(αβ)
v (t) − u

(αβ)
f (t)) (3.9)

By using the transformation angleθ derived from a phase-locked loop (PLL), (3.7),
(3.8) and (3.9) are further transferred into the rotatingdq-coordinate system as:

d

dt
i
(dq)
tr (t) = −

Rtr

Ltr

i
(dq)
tr (t) − jωi

(dq)
tr (t) +

1

Ltr

(u
(dq)
f (t) − u

(dq)
PCC(t)) (3.10)

d

dt
u

(dq)
f (t) = −

1

Cf

i
(dq)
tr (t) +

1

Cf

i(dq)
v (t) − jωu

(dq)
f (t) (3.11)

d

dt
i(dq)
v (t) = −

Rv

Lv

i(dq)
v (t) − jωi(dq)

v (t) +
1

Lv

(u(dq)
v (t) − u

(dq)
f (t)) (3.12)

The voltage of the AC filter, the current through the phase reactor Rv + jωLv and
the voltage of the VSC side can be expressed:

u
(dq)
f (t) = u

(dq)
PCC(t) + Rtri

(dq)
tr (t) + jωLtri

(dq)
tr (t) + Ltr

d

dt
i
(dq)
tr (t) (3.13)

i(dq)
v (t) = i

(dq)
tr (t) + jωCfu

(dq)
f (t) + Cf

d

dt
u

(dq)
f (t) (3.14)

u(dq)
v (t) = u

(dq)
f (t) + Rvi

(dq)
v (t) + jωLvi

(dq)
v (t) + Lv

d

dt
i(dq)
v (t) (3.15)

The mean voltages and currents over the sample periodk to k + 1 are derived by
integrating (3.13), (3.14) and (3.15) fromkTs to (k + 1) Ts and dividing byTs (whereTs

is the sampling time).

u
(dq)
f (k, k + 1) = u

(dq)
PCC(k, k + 1) + Rtri

(dq)
tr (k, k + 1) + jωLtri

(dq)
tr (k, k + 1)

+
Ltr

Ts

(i
(dq)
tr (k + 1) − i

(dq)
tr (k)) (3.16)

i(dq)
v (k, k + 1) = i

(dq)
tr (k, k + 1) + jωCfu

(dq)
f (k, k + 1)

+
Cf

Ts

(u
(dq)
f (k + 1) − u

(dq)
f (k)) (3.17)

u(dq)
v (k, k + 1) = u

(dq)
f (k, k + 1) + Rvi

(dq)
v (k, k + 1) + jωLvi

(dq)
v (k, k + 1)

+
Lv

Ts

(i(dq)
v (k + 1) − i(dq)

v (k)) (3.18)

whereu
(dq)
PCC(k, k + 1), i

(dq)
tr (k, k + 1), u

(dq)
f (k, k + 1), i

(dq)
v (k, k + 1) andu

(dq)
v (k, k + 1)

are the average values ofu
(dq)
PCC, i

(dq)
tr , u

(dq)
f , i

(dq)
v andu

(dq)
v over the sampling period [76].

During one sample periodTs, it can be assumed that:
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3.2. Vector controller

- in (3.16) the currenti(dq)
tr (k, k + 1) is changed linearly, the voltageuPCC(k, k +

1) changes slowly as compared with the dynamics ofi
(dq)
tr (k, k + 1) and can be

considered constant.

- in (3.17) the voltageu(dq)
f (k, k + 1) is changed linearly and the currenti

(dq)
tr (k, k +

1) changes slowly as compared with the dynamics ofu
(dq)
f (k, k + 1) and can be

considered constant.

- in (3.18) the currenti(dq)
v (k, k + 1) is changed linearly and the voltageuf(k, k +

1) changes slowly as compared with the dynamics ofi
(dq)
v (k, k + 1) and can be

considered constant.

- the controller uses dead-beat gain of the proportional regulator, thus the current
through the transformer, the voltage of the AC filter and the current through the
phase reactor will track the reference values with one sample delay, i.e.i(dq)

tr (k +

1) = i
(dq)∗

tr (k), u
(dq)
f (k + 1) = u

(dq)∗

f (k) andi
(dq)
v (k + 1) = i

(dq)∗

v (k).

Under the above assumptions it can be derived that:

u
(dq)
f (k, k + 1) = u

(dq)
PCC(k) +

Rtr

2

[

i
(dq)∗

tr (k) + i
(dq)
tr (k)

]

+ j
ωLtr

2

[

i
(dq)∗

tr (k) + i
(dq)
tr (k)

]

+
Ltr

Ts

[

i
(dq)∗

tr (k) − i
(dq)
tr (k)

]

(3.19)

i(dq)
v (k, k + 1) = i

(dq)
tr (k) + j

ωCf

2

[

u
(dq)∗

f (k) + u
(dq)
f (k)

]

+
Cf

Ts

[

u
(dq)∗

f (k) − u
(dq)
f (k)

]

(3.20)

u(dq)
v (k, k + 1) = u

(dq)
f (k) +

Rv

2

[

i(dq)∗

v (k) + i
(dq)
tr (k)

]

+ j
ωLv

2

[

i(dq)∗

v (k) + i(dq)
v (k)

]

+
Lv

Ts

[

i(dq)∗

v (k) − i(dq)
v (k)

]

(3.21)

It is assumed that the produced average currents and voltages between samplek andk+1

become the reference currents and voltages at samplek. Finally the following proportional
control equations can be derived as:

u
(dq)∗

f (k) = u
(dq)
PCC(k) + Rtri

(dq)
tr (k) + j

ωLtr

2

[

i
(dq)∗

tr (k) +i
(dq)
tr (k)

]

+ kp,pcc

[

i
(dq)∗

tr (k) − i
(dq)
tr (k)

]

(3.22)

i(dq)∗

v (k) = i
(dq)
tr (k) + j

ωCf

2

[

u
(dq)∗

f (k) + u
(dq)
f (k)

]

+ kp,uf

[

u
(dq)∗

f (k) − u
(dq)
f (k)

]

(3.23)

u(dq)∗

v (k) = u
(dq)
f (k) + Rvi

(dq)
v (k) + j

ωLv

2

[

i(dq)∗

v (k) + i(dq)
v (k)

]

+ kp,iv

[

i(dq)∗

v (k) − i(dq)
v (k)

]

(3.24)
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The proportional gains are equal to:

kp,pcc = kpf1 ·

(

Ltr

Ts

+
Rtr

2

)

(3.25)

kp,uf
= kpf2 ·

(

Cf

Ts

)

(3.26)

kp,iv = kpf3 ·

(

Lv

Ts

+
Rv

2

)

(3.27)

In order to stabilize the controller, the gain of the P-partsare altered from the dead
beat gain by the constantskpf1, kpf2 andkpf3. Stability analysis of the system can give
the proper values for the gain factors of the P-controller. It is known that the stability
boundary for a discrete time system is defined as the unit circle. Hence, if the poles of the
system are inside the unit circle, the discrete system is stable.

In the following subsections three different algorithms for the vector controller are
analyzed. All three algorithms are based on (3.22), (3.23) and (3.24).

3.2.1 Inner current controller

The inner current controller is obtained directly from (3.24). An integral part is included
to avoid a steady state error. The resulting control equation reads as follows:

u(dq)∗

v (k) = u
(dq)
f (k) + Rvi

(dq)
v (k) + j

ωLv

2

[

i(dq)∗

v (k) + i(dq)
v (k)

]

+kp,iv

[

i(dq)∗

v (k) − i(dq)
v (k)

]

+ ∆u
(dq)
I,v (k) (3.28)

and the integral term can be written as:

∆u
(dq)
I,v (k + 1) = ∆u

(dq)
I,v (k) + kI,iv

[

i
(dq)∗

v (k) − i
(dq)
v (k)

]

(3.29)

where the integral gain [77] is:

kI,iv = kp,ivTsRv/Lv (3.30)

The reference values of the currents through the phase reactor in thedq-plane, i.e.
i
(dq)∗

v , are given from the outer controllers. Thekp,iv is obtained from (3.27). In (3.27)
kpf3 is chosen to render a stable controller according to stability analysis. It should be
mentioned that a one-sample delay is implemented in the controller due to the calculation
time. Figs. 3.4 and 3.5 show the frequency responses from thecurrent referencei(q)∗

v to
the actual currenti(q)

v for differentkpf3 with and without a one-sample delay. As shown
in Fig. 3.5, the use of a highkpf3 may result in a poor performance or instability of the
system. Therefore, a low value ofkpf3 can be used without a one-sample delay compen-
sation in a slow current controller. However, a highkpf3 should be chosen in a fast current
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3.2. Vector controller

Fig. 3.4 Frequency response from the current referencei
(q)∗

v to the actual currenti(q)
v without a

one-sample delay.

controller and the one-sample delay has to be compensated for. A Smith predictor [78]
can be used to compensate for the time delay. The derived predicted current̂i(dq)

v is given
as:

î(dq)
v (k + 1) =

Ts

Lv

(

u(dq)∗

v (k) − u
(dq)
f (k)

)

+

(

1 −
RvTs

Lv

− jωTs

)

î(dq)
v (k)

+ kps

(

i(dq)
v (k) − î(dq)

v (k)
)

(3.31)

wherekps is a proportional gain of the Smith predictor.
The control equation of the inner current controller (3.28)is modified as:

u(dq)∗

v (k) = u
(dq)
f (k) + Rvi

(dq)
v (k) + j

ωLv

2

[

i(dq)∗

v (k) + i(dq)
v (k)

]

+ kp,ive(k) + ∆u
(dq)
I,v (k) (3.32)

where
e(k) =

(

i(dq)∗

v (k) − i(dq)
v (k)

)

−
(

î(dq)
v (k) − î(dq)

v (k − 1)
)

(3.33)

and the integral term can be rewritten as:

∆u
(dq)
I,v (k + 1) = ∆u

(dq)
I,v (k) + kI,ive(k) (3.34)
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Fig. 3.5 Frequency response from the current referencei
(q)∗

v to the actual currenti(q)
v with a one-

sample delay.

3.2.2 Dual vector controller

The dual vector controller is based on (3.23) and (3.24). It consists of a filter-bus voltage
outer controller for the voltageuf , and an inner current control loop for the currentiv
which has been described in the above subsection. In this subsection the inner current
controller will be described again together with the filter-bus voltage controller for clarity.

The resulting control equations of the dual vector controller can be written as:

i(dq)∗

v (k) = i
(dq)
tr (k) + j

ωCf

2

[

u
(dq)∗

f (k) + u
(dq)
f (k)

]

+ kp,uf

[

u
(dq)∗

f (k) − u
(dq)
f (k)

]

+ ∆i
(dq)
I,v (k) (3.35)

u(dq)∗

v (k) = u
(dq)
f (k) + Rvi

(dq)
v (k) + j

ωLv

2

[

i(dq)∗

v (k) + i(dq)
v (k)

]

+ kp,iv

[

i(dq)∗

v (k) − i(dq)
v (k)

]

+ ∆u
(dq)
I,v (k) (3.36)

where the integral terms are:

∆i
(dq)
I,v (k + 1) = ∆i

(dq)
I,v (k) + kI,uf

[

u
(dq)∗

f (k) − u
(dq)
f (k)

]

(3.37)

∆u
(dq)
I,v (k + 1) = ∆u

(dq)
I,v (k) + kI,iv

[

i(dq)∗

v (k) − i(dq)
v (k)

]

(3.38)
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wherekI,uf
= kp,uf

Ts

Ti,uf

andTi,uf
is the integral time constant. Againkp,uf

andkp,iv are
calculated from (3.26) and (3.27) whilekI,iv is given from (3.30). The reference values
of the filter-bus voltages in thedq-plane, i.e.u(dq)∗

f , can be set tou(d)∗

f = 0.0 pu and
u

(q)∗

f = 1.0 pu in a flux-oriented system to control the filter-bus voltage tothe rated value.
In (3.35) and (3.36) the factorskpf2 andkpf3 are chosen to tune the proportional gains of
the controller.

The effect on the stability of the controller when changing the gain factorskpf2

andkpf3 is examined. The zeros and poles of the complete system’s transfer function are
shown in Fig. 3.6 wherekpf2 is varied between 0 and 1 (The directions of the arrows in
the figure indicate the directions of increasingkpf2). From the study it can be concluded
that the poles are attracted into the unit circle more quickly when decreasingkpf3. When
kpf2 is set to be the dead-beat gain (kpf2 = 1) the system can be stable whenkpf3 is set to
be 0.3 or less. However, a high value ofkpf3 will lead to an unstable behavior even though
kpf2 is chosen to be low. As shown in Fig. 3.6,kpf3 should be chosen to be less than 0.5 to
keep the system stable whenkpf2 is set to be lower.

Fig. 3.6 Poles and zeros of the discrete time closed loop system withkpf2 increasing from 0 to 1
andkpf3 = 0.5 (× : kpf2 = 0.1, + : kpf2 = 0.5 and∗ : kpf2 = 1.0).

3.2.3 Vector controller with LCL filter

The purpose of the vector controller with LCL filter is to generate the controlled voltage
valueu∗

v such that the AC voltage and frequency at the PCC keep their reference values
wheni

(dq)∗

tr are obtained from the PCC voltage and frequency controllers.The vector con-
troller with LCL filter [75] comprises a PCC current control loop for the current through
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Chapter 3. Control System of the VSC-HVDC

the transformer, i.e. (3.22), a filter-bus voltage controller for the filter capacitor voltage,
i.e. (3.23), and an inner current control loop for the current through the phase reactor, i.e.
(3.24). All together, the vector controller with LCL filter consists of two P controllers and
one PI controller with additional feed forward and feed backterms. The filter-bus voltage
controller and the inner current controller, described in the previous subsections, will be
described again together with a PCC current controller for clarity.

The derived vector controller with LCL filter are formulated as:

u
(dq)∗

f (k) = u
(dq)
PCC(k) + Rtri

(dq)
tr (k) + j

ωLtr

2

[

i
(dq)∗

tr (k) +i
(dq)
tr (k)

]

+ kp,pcc

[

i
(dq)∗

tr (k) − i
(dq)
tr (k)

]

(3.39)

i(dq)∗

v (k) = i
(dq)
tr (k) + j

ωCf

2

[

u
(dq)∗

f (k) + u
(dq)
f (k)

]

+ kp,uf

[

u
(dq)∗

f (k) − u
(dq)
f (k)

]

(3.40)

u(dq)∗

v (k) = u
(dq)
f (k) + Rvi

(dq)
v (k) + j

ωLv

2

[

i(dq)∗

v (k) + i(dq)
v (k)

]

+ kp,iv

[

i(dq)∗

v (k) − i(dq)
v (k)

]

+ ∆u
(dq)
I,v (k) (3.41)

The overall structure of the vector controller with LCL filteris shown in Fig. 3.7.
As described in (3.25), (3.26) and (3.27), the proportionalgains are scaled by the gain
factorskpf1, kpf2 andkpf3 to stabilize the closed loop system.

Filter bus
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controller
(P-control, kpf2)

)(*)( ki dq
tr
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tr
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f

)()*( ki dq
v
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v
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current 
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(P-control, kpf1)
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Inner 
current controller
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v

)()( ku dq
f

Fig. 3.7 Schematic diagram of the vector controller with LCL filter.

To investigate the influence of the gain factorskpf1, kpf2 andkpf3 on the stability of
the vector controller with LCL filter, the zeros and poles of the complete system’s transfer
function are computed with the gain factors varied between 0and 1. The variation of zeros
and poles are plotted in Fig. 3.8 whenkpf3 is changed (The direction of the arrow in the
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3.2. Vector controller

figure indicates the direction of increasingkpf3). From the results of the stability analysis
it can be obtained thatkpf2 andkpf3 have significant effects on the poles of the system. The
two poles close to the border of the stability region are moving faster when the gain factor
kpf3 is changed as compared to ifkpf2 is changed. A high value ofkpf2 or kpf3 will lead to
an unstable behavior. The influence of the gain factorkpf1 on the system performance is
negligible.

Fig. 3.8 Poles and zeros of the closed loop system withkpf1 = 1.0, kpf2 = 0.2 and variedkpf3.

3.2.4 Limitation

Since the VSC-HVDC does not have any overload capability as synchronous genera-
tors have, a large transient current due to disturbances will stress or damage the valves.
Therefore, a current limit must be implemented in the control system. Moreover, since
the maximum output voltage amplitude out of the VSC is limited by the VSC voltage ca-
pability, the produced reference voltage from the vector controller must be appropriately
limited.

The current limitilim is compared with the current magnitude computed from the
active and reactive reference currents. When the current limit is exceeded, both the active
and reactive reference currents have to be limited. The choice of how to limit both refer-
ence currents will depend on the application. For instance,if the converter is connected
to a strong grid used for transmission, the active referencecurrent will be given high pri-
ority, when the current limit is exceeded, to produce more active power. The produced
active power may be estimated from the equationPmax =

√

u2
v ∗ i2lim. If the converter is
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connected to a weak grid or used to supply an industrial plant, the VSC will give high
priority to the reactive reference current to keep up the AC voltage when the current limit
is exceeded. The remaining capability is then available foractive power production. The
produced reactive and active power may be estimated from thefollowing equations:

Qmax = uv ∗ i
(d)
lim

Pmax =
√

u2
v ∗ i2lim − Q2

max (3.42)

wherei
(d)
lim is the pre-set maximum reactive reference current.

In order to maintain a proper control and reduce the lower-frequency harmonics, the
maximum output voltage amplitude out of the VSC is limited inside the hexagon shown

in Fig. 3.9. The amplitude ofu∗

lim is equal to1
2

√

3
2
uDC [79]. It should be mentioned that

when the limits are reached the back-calculation [80] is used to avoid integrator windup.

α

*
αβu

*
limu

β

)1,1,1(1 −−u

)1,1,1(4 −u

)1,1,1(6 −u)1,1,1(5 −−u

)1,1,1(3 −−u )1,1,1(2 −u

Fig. 3.9 Hexagon including eight realizable voltage vectors of three-phase VSC and the voltage
limit method.

3.3 Outer controller

As previously mentioned the outer controller consists of the DC voltage controller, the AC
voltage controller, the active and reactive power controller and the frequency controller.
In this section different outer controllers are described.
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3.3. Outer controller

3.3.1 DC voltage controller

As shown in Fig. 2.8 the instantaneous active powerP
(dq)
f and reactive powerQ(dq)

f to-
gether with the powerPrec transmitted on the DC side of the VSC are expressed as:

P
(dq)
f (t) = u

(d)
f (t) · i(d)

v (t) + u
(q)
f (t) · i(q)

v (t) (3.43)

Q
(dq)
f (t) = u

(q)
f (t) · i(d)

v (t) − u
(d)
f (t) · i(q)

v (t) (3.44)

Prec(t) = uDC(t) · iDC(t) (3.45)

whereiDC is the current on the DC side of the converter.
For balanced steady state operation, thedq-voltages are constant at the rated value.

Therefore, the voltageu(d)
f will be zero andu(q)

f will be the rated voltage in a flux-oriented
system. In order to ensure stability, the outer controller must be much slower than the
vector controller [81]. At the time-scale of interest for the DC voltage controller, the
currents may thus be assumed equal to their reference values. Under these assumptions,
the expressions for active and reactive power become:

P
(dq)
f (t) = u

(q)
f (t) · i(q)∗

v (t) (3.46)

Q
(dq)
f (t) = u

(q)
f (t) · i(d)∗

v (t) (3.47)

Neglecting the losses in the converter and the phase reactorand equating the power
transmitted on the AC and DC side of the converter yields from(3.45) and (3.46):

iDC(t) =
u

(q)
f (t) · i

(q)∗

v (t)

uDC(t)
(3.48)

Any unbalance between AC and DC power leads to a change in voltage over the DC link
capacitors, given by:

CDC
d

dt
uDC(t) = iDC(t) − iload(t) (3.49)

whereiload is the current out from the DC system, as shown in Fig. 2.8. By applying the
forward Euler method and assuming thatiDC andiload are constant during the interval and
that the DC voltage tracks the reference, the following equation is obtained:

CDC

Ts

{u∗

DC(k) − uDC(k)} = iDC(k) − iload(k) (3.50)

Substituting (3.48) into (3.50) yields:

CDC

Ts

· (u∗

DC(k) − uDC(k)) =
u

(q)
f (k) · i

(q)∗

v (k)

uDC(k)
− iload(k)

=
u

(q)
f (k) · i

(q)∗

v (k)

u∗

DC(k)
− iload(k) (3.51)
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From (3.51) a control equation for the current referencei
(q)∗

v (k) is obtained as:

i(q)∗

v (k) =
u∗

DC(k)

u
(q)
f (k)

{kp,DC · (u∗

DC(k) − uDC(k)) + iload(k)} (3.52)

where

kp,DC = kpf,DC ·
CDC

Ts

(3.53)

The factorkpf,DC adjusts the gainkp,DC to ensure stability.

3.3.2 Active power controller

A simple method to control the active power is an open-loop controller. The reactive
current reference is obtained from (3.46) as:

i(q)∗

v =
P ∗

f

u
(q)
f

(3.54)

whereP ∗

f is the desired (reference) active power. If an accurate control of the active power
is needed, a combination of a feedback loop and an open loop can be used [18]:

i(q)∗

v =
P ∗

f

u
(q)
f

+ (kp,Pf
+

kI,Pf

s
)(P ∗

f − Pf) (3.55)

wherekp,Pf
andkI,Pf

are the proportional and integral gains of the active power controller.

3.3.3 Reactive power controller

A reactive power controller similar to the active power controller is obtained from (3.47)
as:

i(d)∗

v =
Q∗

f

u
(q)
f

(3.56)

whereQ∗

f is the reference reactive power. Another method is to combine a feedback loop
with an open loop [18]:

i(d)∗

v =
Q∗

f

u
(q)
f

+ (kp,Qf
+

kI,Qf

s
)(Q∗

f − Qf) (3.57)

wherekp,Qf
andkI,Qf

are the proportional and integral gains of the reactive power con-
troller.
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3.3.4 AC voltage controller

The voltage drop∆V over the reactanceRv + jωLv in Fig. 2.8 can be approximated as:

∆V = uf − uv ≈
RvPf + XvQf

uf

(3.58)

For the phase reactorXv ≫ Rv, thus the voltage drop∆V depends only on the reactive
power flowQf . According to (3.47), the voltage can then be regulated by controlling the
d-component of the current.

3.3.5 Frequency controller

In this subsection four different frequency controllers will be described as follows.

Frequency controller I

Frequency controller I can be considered as a fixed frequencycontroller. A fixed fre-
quencyf ∗

VSC equal to the nominal frequency is supplied to the VSC output voltage. The
dual vector controller, as described in Section 3.2.2, can be used directly to produce the
reference voltage. It should be noted that such a frequency controller can only be used for
the supply to a system without other sources of frequency control.

Frequency controller II

Frequency controller II is also a fixed frequency controller. A new fixed frequencyf ∗

VSC

is given to the VSC output voltage. This new fixed frequency isobtained from the voltage
dynamics in the DC link. As known, the electrical energy in the capacitor is:

WDC =
1

2
CDCu2

DC (3.59)

If the switching losses of both converters are neglected, the dynamics in the capac-
itor will be the difference between the power into the DC systemPrec and the power out
from the DC systemPinv, given by:

d

dt
WDC =

1

2
CDC

d

dt
u2

DC = Prec − Pinv (3.60)

According to the active power-frequency characteristics in an interconnected sys-
tem [82,83], the new fixed frequency reference for frequencycontroller II can be produced
from the following equation:

f ⋆ = f0 − kFCII(u
∗

DC
2 − u2

DC) (3.61)

whereu∗

DC is the reference value,kFCII is a gain andf0 is the nominal frequency value.
The frequency controller II is therefore of a proportional type.
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Frequency controller III

The principle of frequency controller III [84, 85] is based on the active power-frequency
characteristics in an interconnected system. An integral part is introduced in frequency
controller III to avoid the steady state error, i.e. a PI controller [86, 87]. The input to
frequency controller III is an estimated frequency from thephase locked loop (PLL) [80].

Improvement of frequency controller III

The principle of the VSC frequency controller is based on therelationship of the gener-
ator speed and the mismatch of the mechanical power providedby the turbine and the
generator electric power [83]. The frequency dynamics of the VSC can be described by
the following differential equation:

2Hsys
d

dt
∆ω = (∆PVSC − ∆PL) − D ∗ ∆ω (3.62)

whereHsys is the equivalent inertia constant of the VSC supplied industrial system,∆ω is
the system frequency deviation,D is the damping coefficient,∆PVSC is the active power
change of the VSC and∆PL is the load change. As the VSC has no kinetic energy the
only kinetic energies in the VSC supplied system are in the loads and production units.
Therefore the inertia constant of a VSC supplied system can be defined as follows:

Hsys =
∑

HSM +
∑

HIM (3.63)

whereHSM is the inertia constant of the synchronous machines, turbines and gear boxes
while HIM is the inertia constant of the induction machines and their mechanical loads.

The simplified block diagram of the VSC’s frequency controller is shown in Fig. 3.10.
The controller is chosen to be a PI controller described by:

1

1

1

*ω∆ ω∆)(sFPI

VSCP∆

LP∆

aB

DsH sys +2

1

)(sG

)(' sG

Fig. 3.10 Simplified block diagram of the improved frequency controller III.

FPI(s) = kp,fre +
kI,fre

s
(3.64)
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and an ”active damping” term [80],Ba, is introduced to improve the rejection of distur-
bances. By using internal model control (IMC) [80], the proportional kp,fre and integral
gainkI,fre of the improved frequency controller III can be derived as:

kp,fre = 2αFĤsys (3.65)

kI,fre = 2α2
FĤsys (3.66)

Ba = 2αFĤsys (3.67)

whereαF is the bandwidth of the frequency control loop,Ĥsys is the estimated inertia
constant of the VSC supplied industrial plant. The transferfunction of the closed loop
system can be derived as:

∆ω

∆ω∗
=

FPI(s)G
′(s)

1 + FPI(s)G′(s)

=
skp,fre + kI,fre

s22Hsys + s(kp,fre + D + Ba) + kI,fre

=
s(2αFĤsys) + 2α2

FĤsys

s22Hsys + s(4αFĤsys + D) + 2α2
FĤsys

≈
s(αFĤsys) + α2

FĤsys

s2Hsys + s(2αFĤsys) + α2
FĤsys

(3.68)

In the last expression the damping term D has been considerednegligible in com-
parison with the other term4αFĤsys. As can be seen an accurately estimated inertia con-
stantĤsys has a significant effect on the system behavior. However, it is difficult to always
have access to the accurate inertia constant of the system since it may change drastically
such as before and after the trip of a synchronous generator.Therefore, it is important
to investigate the impact on the system behavior with respect to different values of the
estimated inertia constant. Fig. 3.11 shows the poles and zeros of the closed loop sys-
tem depicted in Fig. 3.10 when varying the estimated inertiaĤsys. It can be seen that the
complex-conjugate pole pairs move towards the right half plane whenĤsys is underesti-
mated, whereas the poles of the closed loop system are negative and real when̂Hsys is
equal to the actualHsys or overestimated. It should be mentioned that with the overesti-
matedĤsys in Fig. 3.11 the poles also move slowly towards the right halfplane. Therefore,
a suitable overestimation ofHsys is chosen in this study in order to create a larger stability
margin.

Frequency controller IV

Frequency controller IV is a droop frequency controller andcan be used when the system
can tolerate small frequency deviations at steady state conditions or the system contains
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Fig. 3.11 Poles and zeros of the closed loop system having different estimates ofHsys.

other units with own frequency controllers. The transfer function of a droop controller
Fdroop(s), shown in Fig. 3.12, can be implemented as follows [39,88,89]:

Fdroop(s) = kp,fre + kI,fre
ωcut

s + ωcut

= (kp,fre + kI,fre)
1 + sγTcut

1 + sTcut

(3.69)

whereγ =
kp,fre

kp,fre+kI,fre
< 1 andTcut = 1

ωcut
.

∆ω will be equal to:

∆ω =
−∆PL

Fdroop(s) + 2Hsyss + D

=
−∆PL

(kp,fre + kI,fre)
1+sγTcut

1+sTcut
+ 2Hsyss + D

(3.70)

where∆ω∗ = 0.
By applying the final-value theorem to (3.70) the steady stateerror can be derived

as:

∆ωss =
−∆PL

kp,fre + kI,fre + D

≈
−∆PL

kVSC

(3.71)

where the static gainkVSC = 1
RVSC

= kp,fre + kI,fre as the dampingD is very small and
can be negligible.RVSC denotes the frequency droop of the VSC.
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Fig. 3.12 Block diagram of frequency controller IV.

3.4 Summary

This chapter has focused on the control system structure of the VSC-HVDC. A cascade
control structure including a fast vector controller and outer controllers has been pre-
sented. Three different vector controllers, i.e. the innercurrent controller, the dual vector
controller and the vector controller with LCL filter, and different outer controllers, such
as the DC and AC voltage controllers, the active power and reactive power controllers and
four different frequency controllers, have been described. Furthermore, some analyses of
the control system have been carried out.
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Chapter 4

VSC-HVDC Connecting Two Grids

This chapter focuses on the performances of the complete andsimplified VSC-HVDC
models at steady state, load changes and disturbances in thesupplying network. Some
results are included in the published papers[Paper A] and[Paper B].

4.1 Introduction

As discussed in Chapters 2 and 3, the high controllability of the VSC-HVDC gives a
number of advantages and applications. Different applications require different choices
of the control strategy. This chapter focuses on the performances of the complete VSC-
HVDC model at steady state, subjected to load changes and disturbances in the supplying
network. Moreover, since the control of the HVDC transmission based on voltage source
converter uses PWM it is necessary to simulate the VSC-HVDC system with a small time
step. This will reduce the simulation speed resulting in an increase of the time required to
get valid and useful simulation results. Therefore, an equivalent but simplified simulation
model of a VSC-HVDC system is evaluated during various disturbances in the supplying
network.

In the complete model the converter consists of a three-phase, two-level, six-pulse
bridge. The converter bridge valves are represented by ideal switches, where on-state
losses and switching losses are neglected and phase reactors and transformers are assumed
linear (saturation is not considered). In the simplified model the switching actions of the
valves are neglected [26,28]. As can be noticed from Figs. 2.5 and 2.8, the only difference
between the complete and simplified model is the connection between the AC and the DC
side.

The behavior of the VSC-HVDC, using the complete model, duringdisturbances
such as faults (balanced and unbalanced faults) and step changes (AC voltage, active and
reactive power) is thoroughly investigated in[Paper A] and [Paper B]. In this chapter,
the key results are illustrated together with supplementary details. Simulations are also
performed to verify the simplified model against the complete model.
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Chapter 4. VSC-HVDC Connecting Two Grids

The studied system is shown in Fig. 4.1 and the system parameters are listed in
Table 4.1. The current limitilim is set to1.0 pu. Two different control strategies are im-
plemented to evaluate the performance:

Strategy 1: AC-voltage control

• converter 1 controls the DC and AC voltages.

• converter 2 controls the active power and the AC voltage.

Strategy 2: reactive-power control

• converter 1 controls the DC voltage and the reactive power.

• converter 2 controls the active power and the reactive power.

2Cdc

2Cdc
DC cable 

Converter 2
(Inverter)

Converter 1
(Rectifier)

AC
Filter

AC
Filter

System 1 System 2

1vi
1tri

1fu 2vi
2tri

2fu

T1 T2

Sending (grid) side Receiving  side

Fig. 4.1 The studied system.

Table 4.1: System parameters
Constant Symbol Actual value Value inpu
Rated (base) voltage U1 150 kV 1.0
Rated (base) voltage U2 33 kV 1.0
DC voltage UDC 160 kV 1.0
Rated (base) power P 60 MW 1.0
Reactor inductance Lv 0.049 µH 0.15
Reactor resistance Rv 0.5133 Ω 0.005
DC capacitor 2CDC 75.2 µF 4ms
System frequency f 50 Hz
Switching frequency fsw 2000 Hz

4.2 Performance during step changes of active and reac-
tive power

This section will show the performance of the complete and simplified VSC-HVDC sys-
tem models with two different control strategies during step changes in active and reactive
power.
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4.2. Performance during step changes of active and reactivepower

4.2.1 Strategy 1: AC-voltage control

Step in active power

Step changes in active power are performed by changing the active current reference
value. The response of the system is shown in Figs. 4.2, 4.3 and 4.4. First the converter 2
active current reference value is changed from+0.0 pu to −0.5 pu at t = 0.02 s and then
set to0.9 pu at t = 0.12 s. As can be seen from Fig. 4.3 the active current can track the
reference current. The DC voltage is changed when the step isapplied and then returns to
the reference value due to the DC voltage controller (Fig. 4.4). The voltages at the filter-
bus 1 and 2 (see Fig. 4.2), in thedq-coordinate system, can be kept constant except for
some transients that occur when both the step changes are applied. It can be noticed that
for the second step the total current reaches the current limit at around 0.13s (Fig. 4.3)
and consequently the DC voltage drops deeply (Fig. 4.4). Theactive power step changes
affect the direction of the transmitted power. When the second step change is applied the
active power flow is adjusted to the new setting within 30 ms (Fig. 4.4).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time, [s]

u(d
q)

f1
 [p

u]

u(d)
f1

 

u(q)
f1

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time, [s]

u(d
q)

f2
 [p

u] u(q)
f2

 

u(d)
f2

 

Fig. 4.2 Steps in active power using an AC-voltage control strategy for the complete(solid line)
and simplified (dash-dotted line) VSC-HVDC systems: voltages indq-plane at the filter-
bus 1 (top) and at the filter-bus 2 (bottom).
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Fig. 4.3 Steps in active power using an AC-voltage control strategy for the complete(solid line)
and simplified (dash-dotted line) VSC-HVDC systems: currents indq-plane at converter
1 (top) and at converter 2 (bottom).
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Fig. 4.4 Steps in active power using an AC-voltage control strategy for the complete(solid line)
and simplified (dash-dotted line) VSC-HVDC systems: DC voltages (top) and active
powers (bottom).
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In Figs. 4.2, 4.3 and 4.4 a comparison is also made between thecomplete and
simplified models. As can be seen high frequency ripples are only shown in the complete
model. The reason is that the switching valves with PWM technology are modelled in
the complete model. It is also found that the most obvious difference is shown in the DC
voltage when the current limit is reached. However, the maximum absolute error of the
DC voltage is only 0.0096 pu (1%). Therefore, it is clearly demonstrated that there is no
significant difference in the performances of the complete and simplified models.

4.2.2 Strategy 2: reactive-power control

Steps in active and reactive power

The changes in active and reactive power are done by adjusting the reference values of
the active and reactive converter current. Simulation results are shown for three changes
in the power settings, as demonstrated in Figs. 4.5, 4.6, 4.7and 4.8:

- at t = 0.02 s the reactive current setting of converter 2 is changed from+0.3 pu to
−0.3 pu.

- at t = 0.07 s the active current setting of converter 2 is changed from−0.5 pu to
+0.5 pu.

- at t = 0.12 s the reactive current setting of converter 1 is changed from−0.5 pu to
+0.5 pu.

As shown in Figs. 4.5, 4.6 and 4.7 when the reactive current step change of converter
2 is applied at 0.02s (Fig. 4.6), theq-component of the voltage at the filter-bus 2 in the
dq-coordinate system drops which is shown in Fig. 4.5. The similar phenomenon can be
observed at the filter-bus 1 (Fig. 4.5) when the reactive current step is applied at converter
1 at 0.12s (Fig. 4.6). When the active current step change is applied at 0.07s (Fig. 4.6),
the transferred active powers at both sides change the direction (Fig. 4.7). Fig. 4.8 shows
the response of the DC voltage. The step changes cause transients on the DC voltage, but,
as expected, the step change of the active power causes a muchhigher transient than that
with the change in reactive current. It can be clearly noticed that both the transient and
the steady state responses of the simplified model agree wellwith the responses of the
complete model. As previously mentioned and expected, the DC voltage high frequency
ripple is found in Fig. 4.8 when the complete model is used in the simulation. This is also
a result of using the switching valves that are replaced as the voltage and current sources
in the simplified model.
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Fig. 4.5 Steps in active and reactive power using a reactive-power control strategy for the com-
plete (solid line) and simplified (dash-dotted line) VSC-HVDC systems: voltagesin dq-
plane at the filter-bus 1 (top) and at the filter-bus 2 (bottom).
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Fig. 4.6 Steps in active and reactive power using a reactive-power control strategy for the com-
plete (solid line) and simplified (dash-dotted line) VSC-HVDC systems: currents in dq-
plane at converter 1 (top) and at converter 2 (bottom).
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Fig. 4.7 Steps in active and reactive power using a reactive-power control strategy for the com-
plete (solid line) and simplified (dash-dotted line) VSC-HVDC systems: active and reac-
tive powers at the filter-bus 1 (top) and at the filter-bus 2 (bottom).
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Fig. 4.8 Steps in active and reactive power using a reactive-power control strategy: DC voltages
uDC.

4.3 Performance during balanced faults - using AC-voltage
control

A 50% three-phase balanced voltage dip with a duration of 100 ms isapplied at0.02 s at
the grid side and its response is illustrated in Figs. 4.9, 4.10 and 4.11. The active current
reference is0.8 pu from converter 1 to converter 2 and is not changed during the fault.
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Both control strategies are tested for the same fault conditions. Only the simulation results
are presented in this section when using control strategy 1,i.e. AC-voltage control.

As shown in Figs. 4.9, 4.10 and 4.11 theq-component voltage at the filter-bus 1
decreases to0.5 pu during the fault and recovers to the reference voltage afterthe fault is
cleared (Fig. 4.9). The reactive and active current at converter 1 increase due to the AC
voltage controller and active current setting (Fig. 4.10).Since the total current of the con-
verter 1 increases to the current limit, the DC voltage drops(Fig. 4.11). Consequently the
active power flows through both converters together with theactive current of converter
2 are reduced to low values during the fault and recover to thedesired value after the
fault (Fig. 4.11). The voltage at the filter-bus 2 in thedq-coordinate system, which is also
controlled to keep the terminal voltage at1.0 pu, is maintained except small transients in
the beginning of the fault and after the fault is cleared (Fig. 4.9). It is also demonstrated
that during a three-phase fault, the decreased voltage at the grid reduces the transferred
active power through the DC link. When the fault is cleared, normal operation is recov-
ered. Therefore, the severity of a three-phase short circuit is reduced as compared with
an AC interconnection. By comparing the performances of the complete and simplified
models it can be obtained that the maximum absolute difference, which is shown in the
DC voltage when the current limit is reached, is only 0.0133 pu (1.8%).
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Fig. 4.9 Three-phase fault at the grid side using an AC-voltage control strategyfor the complete
(solid line) and simplified (dash-dotted line) VSC-HVDC systems: voltages indq-plane
at the filter-bus 1 (top) and at the filter-bus 2 (bottom).
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Fig. 4.10 Three-phase fault at the grid side using an AC-voltage control strategyfor the complete
(solid line) and simplified (dash-dotted line) VSC-HVDC systems: currents indq-plane
at converter 1 (top) and at converter 2 (bottom).
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Fig. 4.11 Three-phase fault at the grid side using an AC-voltage control strategyfor the complete
(solid line) and simplified (dash-dotted line) VSC-HVDC systems: DC voltages (top)
and active powers (bottom).
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4.4 Performance during unbalanced faults - using AC-
voltage control

To investigate the behavior of the VSC-HVDC system during unbalanced faults, a 5-
cycle single-line-to-ground fault (SLGF) is applied in phasea at the grid side at0.02 s

(see Fig. 4.12). The active power flow is0.8 pu, transmitted from converter 1 to converter
2, and is kept constant during the fault.

As shown in Figs. 4.12, 4.13 and 4.14 the voltages at the filter-bus 1 in thedq-
coordinate system are affected by a 100 Hz oscillation (Fig.4.12). The currents of con-
verter 1, in thedq-coordinate system, increase with a large oscillation and the maximum
transient current of converter 1 is1.15 pu (Fig. 4.13). This exceeds the current limit, as
also shown in Fig. 4.15. The DC voltage drops and it contains an oscillation during the
fault (Fig. 4.14). Consequently the transferred active power is reduced and also contains
the oscillation (Fig. 4.14). During the grid side fault the voltages at the filter-bus 2, in
thedq-coordinate system, can be kept constant except a small oscillation (Fig. 4.12). The
currents at converter 2, in thedq-coordinate system, are reduced with an oscillation dur-
ing the fault (Fig. 4.13). All oscillations in voltages and currents at both systems, in the
dq-coordinate system, means that the phase voltages and currents at both systems are
unbalanced.
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Fig. 4.12 SLGF at the grid side using an AC-voltage control strategy for the complete (solid line)

and simplified (dash-dotted line) VSC-HVDC systems withi
(q)∗

v2 = 0.8 pu: voltages in
dq-plane at the filter-bus 1 (top) and at the filter-bus 2 (bottom).
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Fig. 4.13 SLGF at the grid side using an AC-voltage control strategy for the complete (solid line)

and simplified (dash-dotted line) VSC-HVDC systems withi
(q)∗

v2 = 0.8 pu: currents in
dq-plane at converter 1 (top) and at converter 2 (bottom).
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Fig. 4.14 SLGF at the grid side using an AC-voltage control strategy for the complete (solid line)

and simplified (dash-dotted line) VSC-HVDC systems withi
(q)∗

v2 = 0.8 pu: DC voltages
(top) and active powers (bottom).

53



Chapter 4. VSC-HVDC Connecting Two Grids

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−1.15

−1

−0.5

0

0.5

1
1.15

Time, [s]

i tr
1 [p

u]
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simplified (dash-dotted line) VSC-HVDC systems withi
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v2 = 0.8 pu: phase currents
atT1.

From Figs. 4.12, 4.13 and 4.14 it can be obtained that the unbalance is trans-
ferred from system 1 to system 2. This unbalance can be reduced either by decreasing
the transferred active power or increasing the current limit of converter 1 [90]. As shown
in Figs. 4.16 and 4.17, when the active power flow is set to0.4 pu (Fig. 4.16), the DC volt-
age contains a large oscillation without a drop during the fault (Fig. 4.17) which implies
that system 1 can still transfer the required active power tosystem 2.
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Fig. 4.16 SLGF at the grid side using AC-voltage control strategy for the complete (solid line)
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filter-bus 2 (top) and currents at converter 2 (bottom) indq-plane.
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4.5. Improvement of the system performance during unbalanced faults

As shown in Fig. 4.17 the active power flow at the faulted side (Pf1) of the DC link
shows a large oscillation during the fault. However, the oscillation of the active power at
the non-faulted side (Pf2) is less which clearly demonstrates that the DC link filters out
the unbalance at system 1 and system 2 is operating close to normal.
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Fig. 4.17 SLGF at the grid side using AC-voltage control strategy for the complete (solid line)

and simplified (dash-dot line) VSC-HVDC systems withi
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v2 = 0.4 pu: DC voltages
(top) and active powers at the filter-bus 1 and 2 (bottom).

4.5 Improvement of the system performance during un-
balanced faults

As shown and mentioned in the above section, the AC currents at converter 1, shown
in Fig. 4.15, exceed the current limit during SLGF and this may cause the overcurrent
protection of the VSC to trigger. A trip of the DC link would significantly reduce the
reliability of the supply. In order to avoid a triggering, two modified controllers are used at
converter 1 to improve the performance of system 1. In these two modified controllers the
positive and negative sequence components of the AC system are considered separately.

In both modified controllers the inner current controller, described in Chapter 3,
is modified and divided into two parts: the positive-sequence current controller and the
negative-sequence current controller. The method that is derived in [91] and used in [68]
to separate positive-sequence and negative-sequence components is adopted. This method
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implemented in the digital control system can be defined as:

x(αβ)
pos (k) =

1

2

(

x(αβ)(k) + jx(αβ)(k −
1

4

T

Ts

)

)

(4.1)

x(αβ)
neg (k) =

1

2

(

x(αβ)(k) − jx(αβ)(k −
1

4

T

Ts

)

)

(4.2)

wherex
(αβ)
pos andx

(αβ)
neg are the positive-sequence and negative-sequence components in the

αβ-plane, respectively.T is the period of the grid fundamental frequency.
The control equations of the modified inner current controller are shown in (4.3)

and (4.4).

u(dq)∗

v,pos(k) = u
(dq)
f,pos(k) + Rvi

(dq)
v,pos(k) + j

ωLv

2

[

i(dq)∗

v,pos(k) + i(dq)
v,pos(k)

]

+ kp,iv

[

i(dq)∗

v,pos(k) − i(dq)
v,pos(k)

]

+ ∆u
(dq)
I,v,pos(k) (4.3)

u(dq)∗

v,neg(k) = u
(dq)
f,neg(k) + Rvi

(dq)
v,neg(k) − j

ωLv

2

[

i(dq)∗

v,neg(k) + i(dq)
v,neg(k)

]

+ kp,iv

[

i(dq)∗

v,neg(k) − i(dq)
v,neg(k)

]

+ ∆u
(dq)
I,v,neg(k) (4.4)

where∆u
(dq)
I,v,pos and∆u

(dq)
I,v,neg are the integral terms.i(dq)∗

v,pos(k) andi
(dq)∗

v,neg(k) are the positive-
sequence and negative-sequence current references in thedq-coordinate system, respec-
tively. The block scheme of the modified inner current controller for converter 1 of the
VSC-HVDC is displayed in Fig. 4.18. Reference values of the positive-sequence reactive
and active currents are obtained from outer controllers, i.e. the AC voltage controller and
the DC voltage controller. For the negative-sequence reactive and active current references
two different algorithms are proposed.

4.5.1 Improved controller with zero negative-sequence referencecur-
rents

Balanced currents can be implemented by eliminating the negative-sequence currents.
Therefore, in the improved controller, the negative-sequence current references in thedq-
coordinate system are set to zero, i.e.i

(dq)∗

v,neg = 0, to achieve balanced currents during
unbalanced faults.

In Fig. 4.19 three phase currents atT1 have less oscillations than those shown in
Fig. 4.15. Moreover, the maximum transient current is almost equal to the current limit
ilim. The DC voltage shows an oscillation. As clearly shown in Fig. 4.22, the oscillation
of the DC voltage using improved controller withi(dq)∗

v,neg = 0 is less than the oscillation of
the DC voltage with the original controller.
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Fig. 4.18 Block scheme of the improved inner current controller for the VSC-HVDC converter 1.
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4.5.2 Improved controller with negative-sequence reference currents

The improved controller with negative-sequence referencecurrentsi(dq)∗

v,neg introduces dif-
ferent reference values for the negative-sequence active and reactive currents [92].

In the system shown in Fig. 4.1, the transmitted instantaneous apparent powerS(t)

is given by:

S(t) = P (t) + jQ(t)

=
[

ejωt(u
(d)
f,pos+ju

(q)
f,pos)+e−jωt(u

(d)
f,neg+ju

(q)
f,neg)

]

(4.5)

×
[

e−jωt(i(d)
v,pos−ji(q)

v,pos)+ejωt(i(d)
v,neg−ji(q)

v,neg)
]

From (4.5) it follows that the instantaneous real powerP (t) and reactive powerQ(t) can
be expressed as:

P (t) = P0 + Pc2 cos(2ωt) + Ps2 sin(2ωt) (4.6)

Q(t) = Q0 + Qc2 cos(2ωt) + Qs2 sin(2ωt) (4.7)

where
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Q0 = (u
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(q)
f,negi

(d)
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f,negi

(q)
v,neg) (4.11)

During disturbances in the AC systems, e.g. faults and switching actions, large
power oscillations may occur between the AC and DC side. Thiswill result in oscilla-
tions in the DC voltage and a DC overvoltage which may stress the valves. In order to
eliminate the DC voltage oscillation,Pc2 andPs2 should be equal to zero. By applying
this condition into (4.9) and (4.10), the negative-sequence reactive and active current ref-
erences (i(d)∗

v,neg andi
(q)∗

v,neg) are:

i(d)∗

v,neg = −
u

(d)
f,negP0

D0

+
u

(q)
f,negQ0

D1

(4.12)

i(q)∗

v,neg = −
u

(q)
f,negP0

D0

−
u

(d)
f,negQ0

D1

(4.13)

where

D0 = (u
(d)
f,pos)

2 + (u
(q)
f,pos)

2 − (u
(d)
f,neg)

2 − (u
(q)
f,neg)

2 (4.14)

D1 = (u
(d)
f,pos)

2 + (u
(q)
f,pos)

2 + (u
(d)
f,neg)

2 + (u
(q)
f,neg)

2 (4.15)

With these choices of reference values for the negative-sequence active and reactive cur-
rents, the coefficientsPc2 andPs2 will be zero.
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4.5. Improvement of the system performance during unbalanced faults

Figs. 4.20 and 4.21 illustrate the responses of the phase currents atT1 and the DC
voltages when converter 1 uses the improved controller withunlimited and limitedi(dq)∗

v,neg.
By comparing both the DC voltage and the phase currents atT1 it can be obtained that
the oscillation amplitude of the DC voltage with unlimited negative-sequence current ref-
erences is less whereas the maximum transient current with unlimited negative-sequence
current references is higher. It can be noticed that the phase currents atT1 exceed the
current limit for both cases. Fig. 4.22 compares the DC voltage during the same fault in
system 1 using three different controllers, i.e. the original controller, the improved con-
troller with i

(dq)∗

v,neg = 0 and the improved controller with limitedi(dq)∗

v,neg. It can be seen
that the oscillation of the DC voltage using improved controller with limited i

(dq)∗

v,neg is the
smallest one.
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Fig. 4.20 SLGF at the grid side using the improved controller with unlimitedi
(dq)∗

v,neg for the com-
plete (solid line) and simplified (dash-dotted line) VSC-HVDC systems. AC currents at
T1 (top) and DC voltages (bottom).
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4.6 Summary

This chapter has presented the dynamic performances of the complete and simplified
VSC-HVDC models during step changes of the active and reactive powers, balanced and
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4.6. Summary

unbalanced faults. From simulation results it can be obtained that the VSC-HVDC can ful-
fill fast and bi-directional power transfers and AC voltage adjustment. The VSC-HVDC
control strategies can be varied regarding different objectives. The simplified VSC-HVDC
model agrees well with the complete model during transientsand in steady state. Further-
more, two modified controllers have been presented and implemented in the VSC-HVDC
control system to improve the system performance during unbalanced faults in the grid.
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Chapter 5

VSC-HVDC System for Industrial
Plants

In this chapter the performance of a VSC-HVDC supplying an industrial system with and
without on-site generation is investigated. Some additional results are included in the
papers[Papers C-I].

5.1 Introduction

As discussed in Chapter 1 large industries have a high electricity consumption and are
typically supplied directly from the sub-transmission grid. This results in a very reliable
supply to the plant. Moreover, many industrial customers, such as pulp and paper indus-
tries, refineries and steel factories, have facilities withon-site generation. The on-site gen-
eration has several benefits for the industries as well as theutility grid such as reducing
electricity costs and improving the power quality. However, power-quality disturbances
can still spread directly from the supplying grid to the industrial installation and vice
versa. A VSC-HVDC link is capable of transferring the active power from the grid and,
at the same time, decreasing the disturbances from the utility grid.

When a VSC-HVDC supplies the industrial network, the inverterof the VSC-
HVDC can use the AC voltage and frequency controllers to keepthe load side AC voltage
and frequency constant. In this way power-quality disturbances like voltage dips do not
reach the industrial installation. However, due to the low inertia in the industrial network,
the control and operation of industrial installations differ considerably from that of large
transmission or sub-transmission networks [93]. Hence, inthis chapter the performance
of the industrial system when supplied by a VSC-HVDC is investigated in different situ-
ations. It should be mentioned that the VSC-HVDC model used inthe simulations is the
simplified model presented in Chapter 4, where it was demonstrated that the simplified
model is a very good approximation of the complete model bothduring transients and in
steady state.
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Chapter 5. VSC-HVDC System for Industrial Plants

5.2 VSC-HVDC system for industrial plants without on-
site generation

In this section, a VSC-HVDC supplied industrial plant without on-site generators is inves-
tigated. Initially the VSC supplying different load compositions are simulated to analyze
the impact of various loads on the voltage and frequency response of the system. During
these studies the VSC utilizes the AC voltage and frequency controllers.

5.2.1 Investigation of frequency/AC voltage control for the VSC

Some simulation results and analysis presented in this section have been presented in[Pa-
per C].

Fig. 5.1 shows a VSC and two different industrial plants. System I comprises a
resistive load, an induction motorIM1 and an aggregate induction motor IM which repre-
sents the rest of the load. System II includes the same resistive load, the same induction
motorIM1 and an aggregate synchronous motor SM which represents the rest of the load.

VSC

IM

Induction motor 

Resistive load

IM1

All other induction motors

(a) System I

VSC

SM

Induction motor 

Resistive load

IM1

All other synchronous motors

(b) System II

Fig. 5.1 System I (a): an HVDC infeed and mainly induction motor loads. System II (b): an
HVDC infeed and mainly synchronous motor loads.

Figs. 5.2 and 5.3 show the minimum frequency at the PCC as functions of the
converter current limit under several different rotating motor inertia constants. In both
systems the size ofIM1 is 0.113 pu (total load 1.0 pu). As expected, when the current
limit increases, the minimum frequency increases. Furthermore, with an increase of the
rotating motor inertia the frequency deviation decreases.The intersection points of the
acceptable minimum frequency and the minimum frequency arethe critical VSC current
limits. As an example the acceptable minimum frequency is assumed to be 48 Hz. In
Fig. 5.2 it can be seen that the intersection points E and F arethe minimum VSC current
limits for frequencies≥ 48Hz whenHIM is 2.8s and 1.4s respectively. However, there is
no intersection point in Fig. 5.3 in this simulated case. This implies that the converter of
system II does not need to be overrated to meet the frequency requirement in the power
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5.2. VSC-HVDC system for industrial plants without on-site generation

system. It should be mentioned that the minimum current limit of the VSC increases with
an increase of the size ofIM1.

Fig. 5.2 Minimum frequency at PCC as functions of VSC current limitilim under different induc-
tion machine inertia constantHIM in System I during anIM1 start.

Fig. 5.3 Minimum frequency at PCC as functions of VSC current limitilim under different syn-
chronous machine inertia constantHSM in System II during anIM1 start.
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5.2.2 A VSC-HVDC supplied industrial plant

Last subsection illustrates the impact of rotating machines, i.e. induction and synchro-
nous motors, on the voltage and frequency response of the VSCsupplied industrial plants
when the VSC uses the voltage and frequency controllers. This subsection will further in-
vestigate a case where the VSC-HVDC supplies an industrial plant with mainly induction
motors, as shown in Fig. 5.4. The control strategy is designed to control the AC and DC
voltages on the rectifier side and to control the AC voltage and frequency at the inverter
side. Various disturbances such as load changes, balanced and unbalanced faults from
the grid have been tested. Detailed simulation results and analysis have been included in
[Paper D]. In this subsection the system dynamics due to grid faults and motor starts are
shown to emphasize the significance of the VSC-HVDC current limit and the benefits and
limitations of the VSC-HVDC.

AC 
grid IM2

Induction motor

Resistive load

IM 1

All other 
induction motors

PCC

AC 
filter

AC 
filter

Rectifier InverterSending 
(grid) side

Receiving 
side

Load bus

1fu 2fu

2vi1vi

Fig. 5.4 Model for a VSC-HVDC system with different loads.

Three-phase faults at the sending side

A voltage dip with a retained voltage of 0.5 pu and a duration of 0.1s is simulated at
the sending side of the VSC-HVDC. The dynamics of the link during and after the dip
depend on the remaining control margin, i.e. on the difference between the pre-event load
current and the current limit. The simulations have been repeated for different values of
the current limit. The results are shown in Figs. 5.5 - 5.7. The fault is applied at0.02 s and
is cleared 5 cycles later.

As shown in Figs. 5.5 - 5.7, when the currentiv1 reaches the current limit, the DC
voltage decreases and the transferred active power is reduced. This significantly affects the
frequency but also slightly affects the voltage at the PCC. Forinstance, when the current
limit of the VSC is equal to 1.1 times the total load, the current iv1 increases toilim during
the fault (see Fig. 5.5), the DC voltage drops to about 0.85 puand the transferred active
power is reduced to about 0.5 pu which is not enough to supply the total load at the
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5.2. VSC-HVDC system for industrial plants without on-site generation

receiving side of the VSC-HVDC. The estimated frequency at thePCC then drops to less
than 49 Hz (Fig. 5.6). With the drop of the estimated frequency at the PCC, the speed,
absorbed active and reactive power of both the induction motors are reduced (Fig. 5.7).
With an increase of the VSC current limit, the power quality of the load bus or PCC is
improved. When the rating or the current limit of the VSC is twotimes the total load, the
DC link can transfer enough active power during the fault such that the AC voltage and
estimated frequency at the PCC can be kept at their reference values. In order for the load
bus or PCC to be immune to the fault, when the voltage dip magnitude is less than 0.5 pu
at the sending side, the current limit setting of the VSC-HVDCconverters has to be at
least 1.7 times the total load current. It should be mentioned that the current limit is also
dependent on the capacitor size of the AC filter. With an increase of the capacitor size, the
required current limit of the converter will decrease.
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Fig. 5.5 Current amplitude, DC voltage and active power at sending side during a three-phase grid
fault.
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Fig. 5.6 Voltage amplitude, current amplitude and frequency at PCC during a three-phase grid
fault.

From the simulation results it can be seen that the current limit significantly affects
the dynamics of the system during and after a grid fault. For asufficiently high current
limit the controller is able to maintain the voltage and frequency at the PCC at their
pre-event values. In that case the load does not experience any disturbance. When the
current limit is lower, the load experiences a drop in frequency and a drop in voltage.
Note, however, that even for the lowest current limit (10% above the load current) the
voltage does not drop below 0.95 pu. Instead the motor load consumes significantly less
active power. The consequence is a drop in the motor speed which causes a higher active
and reactive power demand after the dip. This, however, is not perceived as a problem,
neither for the motors, nor for other loads. The drop in the estimated frequency, to slightly
below 49 Hz, is more severe than normal in large interconnected systems. However, the
industrial equipment is rarely sensitive to frequency variations. The drop in speed of the
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5.2. VSC-HVDC system for industrial plants without on-site generation

induction motor is up to3%, which is sufficient as speed-sensitive processes normallyare
not powered directly by induction motors.

In order to show the capability of the VSC-HVDC, to enhance the quality of power
supply to an industrial system, a comparison of the responses of both induction motors
IM1 andIM2 after a voltage dip of 50% is shown in Table 5.1. The comparison is made
between a conventional AC supply and a VSC-HVDC supply. As canbe seen in Table 5.1,
the highest current of the induction motorIM2 is 4.523 pu and the lowest speed is 0.9 pu
during the fault when supplied purely by an AC system. However, when supplied by a
VSC-HVDC system, the highest current ofIM2 is only 1.086 pu and the speed only slows
down to 0.941 pu during the fault. This comparison clearly illustrates that the VSC-HVDC
significantly improves the quality of power supply to industrial loads.
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Fig. 5.7 Speed, active and reactive power ofIM2 during a three-phase grid fault.

69



Chapter 5. VSC-HVDC System for Industrial Plants

Table 5.1: Comparison of induction motors in both systems during a three-phase grid
fault.

AC supply VSC-HVDC supply

with ilim/iload = 1.1

imax of IM1 0.239 pu 0.035 pu

ωmin of IM1 0.986 pu 0.968 pu

imax of IM2 4.523 pu 1.086 pu

ωmin of IM2 0.9 pu 0.941 pu

Minimum AC voltage at PCC 0.473 pu 0.961 pu

Minimum frequency at PCC 50 Hz 48.86 Hz

Motor starting

During a motor start the start current can be several times (normally 5-7) as large as the
machine rated current. Hence, when a VSC-HVDC supplies an AC system with induction
motors, it has to increase the reactive power delivered to the AC system to keep up the
voltage during the motor start. However, as previously mentioned, the rating of a VSC is
normally close to the load rating and therefore the reactivepower capability is limited.
Due to this fact it is necessary to perform an analysis of a system with the current limit of
the VSC-HVDC converter included.

The comparison is also made in Table 5.2 between a pure AC supplied industrial
plant and a VSC-HVDC supplied industrial plant. As shown in Table 5.2, for theIM1, it
takes a longer time to start with the VSC-HVDC supply as compared to the pure AC sup-
ply. Moreover, the AC voltage dip at the PCC is deeper and the frequency drops with the

Table 5.2: Comparison of induction motors in both systems during a motor start.

AC supply VSC-HVDC supply
with ilim = 1.1 ∗ iload

imax of IM1 0.448 pu 0.425 pu
Start time ofIM1 0.79s 0.94s
imax of IM2 0.895 pu 0.747 pu
ωr,min of IM2 0.974 pu 0.966 pu
Minimum AC voltage at PCC 0.963 pu 0.933 pu
Minimum frequency at PCC 50 Hz 49.62 Hz

VSC-HVDC supply. This is because the transformer in the AC supply can be overloaded
for a short time whereas the VSC-HVDC does not have any overload capability. With an
increase of the VSC-HVDC current limit, the power quality at the PCC will be improved.
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5.2. VSC-HVDC system for industrial plants without on-site generation

System behavior during different voltages dip magnitudes and durations due to
three-phase grid faults

Some simulation results and analysis have been presented in[Paper E].

In order to obtain the response of power electronics for the proposed VSC-HVDC
control system, a three-phase diode rectifier is included inthe industrial plant as shown in
Fig. 5.4. Here two groups of simulations are carried out. In the first group of simulations,
the applied voltage dips have the same duration (0.1s) and the magnitude is changed from
0.1 pu to 1.0 pu. In the second group of simulations, the magnitude of the voltage dip is
fixed to 0.5 pu and the dip duration is varied between 0.1s to 0.3s.

Figs. 5.8, 5.9 and 5.10 show the results of the first group of simulations, where
several system variables are plotted as functions of voltage dip magnitude under different
current limits of the VSC-HVDC converters. These system variables are: minimum DC
voltage of the VSC-HVDC (Fig. 5.8), minimum AC voltage at the PCC (Fig. 5.9), mini-
mum estimated frequency at the PCC (Fig. 5.9), minimum DC voltage of the diode recti-
fier (Fig. 5.10) and minimum speed of the induction motorIM2 (Fig. 5.10). Apparently,
they increase as the magnitude of the voltage dip becomes higher (i.e. the dip becomes
less severe), they also increase when larger values are chosen for the converter current
limit.
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Fig. 5.9 Minimum AC voltage (top) and minimum estimated frequency (bottom) at the PCC as
functions of voltage dip magnitude with different current limits of the VSC-HVDC con-
verter. The voltage dip duration is fixed to 0.1s.
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Fig. 5.10 Minimum DC voltage of diode rectifier (top) and minimum speed of induction motor
IM2 (bottom) as functions of voltage dip magnitude with different current limits of the
VSC-HVDC converter. The voltage dip duration is fixed to 0.1s.

The results of the second group of simulations are shown in Fig. 5.11, where the
minimum estimated frequency at the PCC and minimum speed of the induction motor
IM2 are plotted as functions of the voltage dip duration. It can be seen that the estimated
frequency decreases as the voltage dip has longer duration.Consequently, the speeds of
the induction motorsIM1 andIM2 have similar responses as the estimated frequency at
the PCC (here, only the speed ofIM2 is shown). In addition the minimum AC voltage
at the PCC, the minimum DC voltages of the VSC-HVDC and the diode rectifier are not
affected by the voltage dip duration.
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Fig. 5.11 Minimum estimated frequency at the PCC (top) and minimumIM2 speed (bottom) as
functions of voltage dip duration with different current limits of the VSC-HVDC con-
verter. The magnitude of the voltage dip is fixed to 0.5 pu.

Therefore, it can also be obtained that the current limit significantly affects the
dynamics of the system during a fault at the grid side.

Comparison of different frequency controllers for a VSC-HVDC supplied system

Some of the simulation results and analysis have been presented in[Paper G].

The aim of this section is to distinguish and compare the effects of different fre-
quency controllers, described in Chapter 3, for preventing voltage instability. Again the
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most severe fault, a three-phase fault, is applied at the grid side. Also common small
disturbances such as motor starts are considered to test thedynamics and ride-through
capability of the system. As can be seen from Table 5.3, when the current limits of the
converter are set to be 1.0 and 1.1 times the total load, the system collapses during a motor
start if the inverter uses frequency controller I or II. However, the system can ride through
these small disturbances when the inverter utilizes frequency controller III. For a balanced
voltage dip with a retained voltage of 0.5 pu and a duration of0.3s, it can be seen from
Table 5.4 that when frequency controller I is applied the system will not recover after a
fault until the current limit has been increased to 1.5 timesthe total load. However, the
system can ride through the voltage dip when the inverter uses frequency controller II
and the current limit is higher than 1.2 times the total load.Furthermore, with frequency
controller III the system can avoid a voltage collapse without overrating the converter.
This shows that it is possible for the system to increase the ride-through capability with-
out overrating the converter when a suitable frequency control strategy, such as frequency
controller III, is adopted.

Table 5.3: System responses with different frequency controllers and current limits during
a motor start (×:voltage collapse,O: stable operation).

ilim/iload 1.0 1.1 1.2

Frequency controller I × × O
Frequency controller II × × O
Frequency controller III O O O

Table 5.4: System responses with different frequency controllers and current limits during
a three-phase grid fault (×:voltage collapse,O: stable operation).

ilim/iload 1.0 1.1 1.2 1.3 1.4 1.5

Frequency controller I × × × × × O
Frequency controller II × × O O O O
Frequency controller III O O O O O O

5.3 VSC-HVDC system for industrial plants with on-site
generation

In Section 5.2 and in [47] the VSC-HVDC feeding an industrial system without on-site
generation has been studied and the system shows a high control flexibility. In this section,
a VSC-HVDC supplied industrial plant with on-site generation is studied. The control
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Chapter 5. VSC-HVDC System for Industrial Plants

strategy, i.e. the rectifier station controls the AC and DC voltage whereas the inverter
station controls the frequency and AC voltage, is adopted inthe VSC-HVDC system.
Some issues have been addressed in[Paper H] and[Paper I] .

In most industrial plants having on-site generation facilities the speed control of
the on-site generation is normally not activated when synchronized to the main grid. The
speed controller becomes active only in island operation [94]. Therefore, this section ana-
lyzes the performance of a VSC-HVDC supplied industrial plant with on-site generation,
shown in Fig. 5.12 when the turbine operates in constant active power production mode
and in speed control mode, respectively.

AC 
grid
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Resistive load

IM1

Rest of the IM load

PCC

AC 
filter

AC 
filter

Converter 1 Converter 2Sending 
(grid) side
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Synchronous generator

Industrial plant

SG Torque from 
the turbine

1vi

PCCu
2fu1fu

DCi

2vi

Fig. 5.12 Model for a VSC-HVDC system with different loads and on-site generation.

5.3.1 On-site generation with constant power production

For industrial customers using on-site generation the production is based on back-pressure
and condensing turbines. Normally the turbines produce as much as possible. Therefore,
this subsection focuses on the investigation of a VSC-HVDC supplied industrial plant
with on-site generation when the turbine produces constantactive power. Impacts of dif-
ferent conditions, such as the generator field voltage, the generator inertia constant, the
generator output and the generator excitation system, havebeen studied in[Paper H].
Here, results with different generator outputs and different generator sizes during the grid
faults will be highlighted.

Three-phase grid fault with different torques

Figs. 5.13 - 5.14 show the dynamic responses of the system during a three-phase grid fault
when the mechanical torque of the generatorTM,SG is set to 0.1 pu and 0.4 pu respectively.
It can be seen that different power production levels affectthe dynamic behavior of the
system significantly. WhenTM,SG is 0.1 pu, the DC voltage decreases during the fault,
which implies that the transferred active power from the grid is reduced. Consequently
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this affects the decay of the frequency (i.e. speed of synchronous generator) and the dy-
namics of the AC voltage at the PCC. However, ifTM,SG is set to 0.4 pu or higher, the
AC voltage and frequency at the PCC can be kept constant. Fig. 5.14 shows the reaction
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Fig. 5.13 DC voltage, voltage amplitude at PCC and speed of the synchronous generator during a
three-phase grid fault with varying mechanical torqueTM,SG.

of the generator - both the steady-state and the transient active power characteristics -
as a function of the load angle. During the fault the VSC-HVDC system can not supply
enough active power to the load due to the current limit of theVSC whenTM,SG is 0.1 pu.
Therefore, the power balance between the supplied mechanical power on the turbine and
the produced electrical power in the generator is disturbed. During the fault the load angle
of the generator increases from 5 to 15 degrees. The generator supplies an active power of
about 0.35 pu which implies that the power balance will not bedisturbed during the same
fault as long asTM,SG is set to be higher than 0.35 pu. This has been verified from the
simulation shown in the Figs. 5.13 - 5.14. It is noted that thevoltage at the PCC, i.e. the
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terminal voltage of the generator, is generally limited to 105% of its rated voltage during
the fault.

Fig. 5.14 Active power and load angle of the synchronous generator during a three-phase grid
fault with varying mechanical torqueTM,SG.

A comparison has also been made with industrial plants having two different sup-
plies, i.e. a VSC-HVDC supply and an AC supply. This aim is to demonstrate the power
supply improvement capability of the VSC-HVDC to an industrial plant with an on-site
generator. Table 5.5 shows the comparison of the responses of both systems. As can be
seen the minimum AC voltage and frequency at the PCC are 0.5 pu and 50 Hz, the highest
current and the lowest speed ofIM2 are 4.83 pu and 0.857 pu during the fault when the
industry is supplied purely by an AC system. However, when supplied by a VSC-HVDC
system withTM,SG = 0.1pu, the minimum AC voltage and frequency at the PCC are
0.96 pu and 49.42 Hz respectively, while the highest currentof IM2 is only 1.068 pu.
Moreover, the speed ofIM2 only slows down to 0.964 pu during the fault. Furthermore,
when supplied by a VSC-HVDC system withTM,SG = 0.7pu, the minimum AC volt-
age and frequency at the PCC are 1.0 pu and 50 Hz. This shows thatthe industrial plant
is immune to this voltage dip due to a three-phase grid fault,and all loads are working
in normal operation. Therefore, this comparison clearly illustrates that the VSC-HVDC
significantly mitigates voltage dips from the grid and improves the power quality of the
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industrial plant.

Table 5.5: Comparison of the system performance including induction motors and syn-
chronous generator in both systems during a three-phase grid fault.

AC supply VSC-HVDC VSC-HVDC

& & &

TM,SG = 0.7pu TM,SG = 0.1pu TM,SG = 0.7pu

imax,IM1
0.265pu 0.06pu 0.05pu

ωmin,IM1
0.907pu 0.965pu 0.975pu

imax,IM2
4.83pu 1.068pu 0.864pu

ωmin,IM2
0.857pu 0.964pu 0.974pu

imax,SG 3.528pu 0.353pu 0.685pu

ωmin,SG 0.994pu 0.988pu 1.0pu

umin,PCC 0.5pu 0.96pu 0.99pu

fmin,PCC 50Hz 49.42Hz 50Hz

Three-phase grid fault with different generator sizes

From Fig. 5.13 it can be concluded that different mechanicaltorquesTM,SG have a signif-
icant influence on the system when the size of the synchronousgenerator is equal to the
total load. In this section the influence of the synchronous generator size on the system
behavior is investigated when the mechanical torque is fixed.

Figs. 5.15 - 5.16 show the response of the system during a three-phase grid fault
when varying the size of the synchronous generatorSSG. TM,SG is 0.7 pu of the generator
power. It can be seen that when the synchronous generator size increases, the correspond-
ing active power production increases. This results in a reduction of the VSC-HVDC’s
active power transfer. Consequently the minimum DC voltage increases during a three-
phase grid fault. However, a change of the apparent power of the generator hardly affects
the reactive power productions of the VSC-HVDC or the generator. When the generator
size is less than 0.5 times the total load the minimum AC voltage at the PCC and the
minimum speed of the generator decrease with the reduced size of the generator whereas
the maximum load angle of the generator rapidly increases with a size reduction. Never-
theless, the minimum AC voltage at the PCC and the minimum speed of the generator are
kept constant when the generator is larger than 0.5 pu.
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Fig. 5.15 DC voltage and AC voltage amplitude at PCC together with the generator speed during
a three-phase grid fault with varyingSSG.
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Fig. 5.16 Active and reactive power from inverter and synchronous generator (a) and load angle
of the synchronous generator (b) during a three-phase grid fault withvaryingSSG.

5.3.2 On-site generation using frequency control

As mentioned in the previous subsection the back-pressure turbines normally produce
as much as possible. However, the electricity production isdependent on the production
process (pulp, paper etc). In this subsection the VSC-HVDC system for industrial plants
with on-site generation will be investigated during load changes and grid faults. During
the studies both the inverter and the on-site generation areequipped with frequency and
AC voltage controllers. Some of the results included in[Paper I] are presented in this sub-
section. The action of both frequency controllers is analyzed. After that two comparisons,
based on the performed simulations, are made:
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- a comparison on the system response will be done during loadchanges when the
VSC-HVDC uses two different frequency controllers, i.e. a PIcontroller and a
droop controller.

- a VSC supplied industrial plant will be compared with the same industrial plant
supplied by a conventional AC supply.

Frequency control of the VSC and the turbine

As previously mentioned the synchronous generator is equipped with an excitation sys-
tem and the turbine with a frequency controller. Since the VSC is also equipped with a
frequency controller it is important to analyze the effect of both frequency controllers on
the system. Therefore, this section will analyze the frequency controllers of the VSC and
the turbine [83,86].

Fig. 5.17 shows the block diagram of the system for small frequency deviations.
The frequency controllers of the VSC and the turbine are denotedFVSC(s) andFGT(s)

respectively. From Fig. 5.17 it can be derived that the frequency deviation∆ω is:

ω∆

G(s)
1

2Hsys s+D

PL

1
FGT(s)

FVSC(s)

PGT

PVSC

1

*ω∆

*ω∆

Fig. 5.17 Simplified block diagram of the system with two frequency controllers.

∆ω = G(s)(∆PGT + ∆PVSC − ∆PL)

=
∆PGT + ∆PVSC − ∆PL

2Hsyss + D
(5.1)

where∆ω∗ = 0.
By imposing∆PGT = −FGT(s)∆ω and∆PVSC = −FVSC(s)∆ω, it can be derived

that:

∆ω =
−∆PL

2Hsyss + D + FGT(s) + FVSC(s)
(5.2)

The turbine is assumed to use a droop frequency controller and the VSC frequency
controller is assumed to be:

- a PI controllerFVSC,PI(s) i.e. the frequency droop is zero.
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- a droop controllerFVSC,droop(s).

The transfer functions ofFGT(s), FVSC,PI(s) andFVSC,droop(s) are described as follow:

FGT(s) = kGT
1 + sαTGT

1 + sTGT

(5.3)

FVSC,PI(s) = kp,fre +
kI,fre

s
(5.4)

FVSC,droop(s) = kVSC
1 + sγTcut

1 + sTcut

(5.5)

whereα < 1 andγ < 1.
By substituting (5.3) and (5.4) or (5.5) into (5.2) and takingaccount of the ”active

damping,Ba” adopted in the PI controller, it can be derived that:

∆ωPI =
−∆PL

2Hsyss + D + Ba + kGT
1+sαTGT

1+sTGT
+ kp,fre +

kI,fre

s

≈
−∆PL

2Hsyss + Ba + kGT
1+sαTGT

1+sTGT
+ kp,fre +

kI,fre

s

(5.6)

∆ωdroop =
−∆PL

2Hsyss + D + kGT
1+sαTGT

1+sTGT
+ kVSC

1+sγTcut

1+sTcut

(5.7)

From (5.6) and (5.7) it can be concluded that at the steady state conditions:

∆ωPI,ss ≈
−∆PL

Ba + kGT + kp,fre + kI,fre · ∞
(5.8)

∆ωdroop,ss =
−∆PL

D + kGT + kVSC

≈
−∆PL

kGT + kVSC

(5.9)

which means that

- when the VSC uses a PI frequency controller, the integral part of the frequency con-
troller of the VSC-HVDC will regulate∆ω to zero. Fig. 5.18 shows the frequency
droop characteristics of the VSC and the turbine.

- when the VSC uses a droop frequency controller, the frequency error of the system
is not regulated to zero. The steady state error of the frequency, approximated to

−∆PL

kGT+kVSC
whenD can be negligible, depends on the combined effect of the droops

of the VSC and the turbine. The total static gain will bekGT + kVSC. This is the
same as for the frequency control strategy of conventional power systems. Fig. 5.19
shows the load sharing of both the VSC and the turbine. As can be seen the initial
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Fig. 5.18 Frequency static characteristics of the VSC and the turbine.

frequency isfPCC1 at steady state. The VSC and the turbine supplyPVSC1 and
PGT1 respectively. After the load change, the VSC and the turbinesupplyPVSC2

andPGT2. The frequency at steady state isfPCC2. The load sharing between the
VSC and the turbine depend on the static droopsRVSC andRGT respectively.
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Fig. 5.19 Sharing of a load change between the VSC and the turbine.

Comparison of PI and droop frequency controllers of the VSC in case of load changes

Fig. 5.20 shows the responses due to anIM2 torque step change which is applied at 0.5s.
As can be seen different frequency control strategies have anegligible impact on the
DC voltage and AC voltage at the PCC. However, they have an obvious effect on the
minimum frequency that varies from 49.15 Hz to 49.4 Hz, and the steady state frequency
that varies from 49.5 Hz to 50 Hz. The transferred active powers for the VSC-HVDC and
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the generator are shown in Fig. 5.21. The VSC takes care of thetorque step change when
the frequency controller of the VSC is realized with a PI controller. This implies that the
VSC may be insufficient to cover the total load variations. This may have an influence on
stability of the system when the size of the VSC is not sufficiently big as compared to the
load. However, the VSC and the generator share the load change according to their droops
when the VSC and the turbine use droop frequency controllers.
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Fig. 5.20 DC voltage, AC voltage and frequency at PCC during a torque step change of IM2. The
turbine and the VSC use droop frequency controllers.

Three-phase grid fault

In Table 5.6 a comparison is made between a pure AC supplied industrial plant and the
same VSC-HVDC supplied industrial plant during a 0.3s three-phase grid fault with a
0.5 pu retained voltage. As shown in Table 5.6, when a conventional AC supply is used
to the industrial plant with on-site generation, the minimum AC voltage and frequency at
the PCC are 0.513 pu and 50 Hz respectively. The highest current and the lowest speed
of IM2 are about 4.87 pu and 0.863 pu during the fault. However, whensupplied by a
VSC-HVDC system and a generator together with a constant loadtorque on the turbine,
the minimum AC voltage and frequency at the PCC are 0.96 pu and 49.42 Hz respectively.
The highest current ofIM2 is 1.068 pu and the speed slows down to 0.964 pu during the
fault. Therefore, it can be concluded that the power qualityof an industrial plant using
on-site generation is significantly improved with a VSC-HVDCsupply as compared to a
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Fig. 5.21 Power responses of the VSC and the generator during a torque step change ofIM2. The
turbine uses a droop frequency controller and the VSC uses a PI frequency controller
(top) or a droop frequency controller (bottom).

pure AC supply. From Table 5.6 it can also be observed that thetransient maximum and
minimum values of the loads in the plant show no major differences, when the two cases,
i.e. the turbine with and without a frequency controller, are compared. This is due to the
slow response of the turbine frequency controller.

Table 5.6: Comparison of the induction motors and the synchronous generator behavior
during a three-phase grid fault when having an AC supply or a VSC-HVDC supply.

AC supply VSC-HVDC VSC-HVDC
& &No FC &FC

TM,SG = 0.1pu TM,SG = 0.1pu PSG0 = 0.1pu

imax,IM1
0.269pu 0.06pu 0.06pu

ωmin,IM1
0.91pu 0.965pu 0.966pu

imax,IM2
4.87pu 1.068pu 1.067pu

ωmin,IM2
0.863pu 0.964pu 0.964pu

imax,SG 3.497pu 0.353pu 0.353pu
ωmin,SG 0.998pu 0.988pu 0.989pu
umin,PCC 0.513pu 0.96pu 0.96pu
fmin,PCC 50Hz 49.42Hz 49.45Hz
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5.4 Summary

This chapter has presented the performance of a VSC-HVDC supplied industrial plant
with and without on-site generation during various disturbances. It focuses on how the use
of frequency controllers in the VSC-HVDC control system to increase the ride-through
capability of the industrial plant in case of voltage disturbances. The impact of the con-
verter current limit on the dynamics of a VSC-HVDC supplied industrial plant during
load changes and grid faults such as three-phase faults and single-phase faults is also
investigated. It can be concluded from simulation results that with the use of the fre-
quency controller in the VSC-HVDC control system the power quality of the industrial
plant is significantly improved. The extent of improvement depends on the current limit of
the VSC-HVDC system, the generator power production levels and the generator ratings
when the industrial plant has on-site generation.
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Chapter 6

Conclusions and Future Work

This chapter draws conclusions and presents some suggestions for further work.

6.1 Conclusions

After the world’s first HVDC Light transmission installation into Gotland, Sweden, 1997,
there has been growing interest in the research on this new HVDC technology. The VSC-
HVDC uses the IGBTs and PWM, which makes it possible to generatethe desired AC
output voltage. This high flexibility of control allows for anumber of new advantages and
applications which have been presented in Chapter 2.

In order to fully exploit the capability of the VSC-HVDC, the control algorithms
of the VSC-HVDC are investigated and the performance is tested in different situations
in this thesis. Two different control strategies, AC-voltage control and reactive power
control, are presented and evaluated when the VSC-HVDC connects two grids. Another
control strategy, frequency control, has been implementedin the VSC-HVDC control sys-
tem to analyze the dynamics of VSC-HVDC supplied industrial systems with and without
on-site generation. The investigation focuses on how the frequency of the output voltage
of the converters can be controlled in order to increase the ride-through capability for
the VSC-HVDC supplied industrial system in case of voltage disturbances. The motiva-
tion of choosing this control strategy is to exploit the inertia of the rotating masses by
slightly decreasing the frequency of the VSC-HVDC output voltage to ride through the
disturbances.

Two control strategies have been implemented when the VSC-HVDC connects two
grids. The results show that

- the system response is fast, high quality AC voltages and currents can be obtained,
the active and reactive power can be controlled independently and are bi-directional.

- the two different control strategies have different effects on the performance of the
VSC-HVDC. For instance, the AC voltage can be kept constant with AC-voltage
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control, while the voltage varies with reactive-power control when the reactive
power flows change. Therefore, if the system is strong, reactive-power control can
be used. Otherwise the AC voltage control is recommendable.The control strategy
should be selected depending on the objectives and characteristics of the system.

- during a three-phase grid fault, the DC voltage drops due tothe converter current
limit. However, the severity of three-phase short circuit currents are reduced as
compared with an AC interconnection.

- during an unbalanced grid fault, the DC voltage drops and shows a large oscillation,
the unbalance at the faulted side is transferred to the un-faulted side. This unbalance
can be reduced either by decreasing the transferred active power or by increasing the
converter current limits. Furthermore, the phase currentsat the faulted side exceed
the current limits. This will stress the valves and may trip the DC link. Therefore, to
avoid overcurrents and reduce the oscillations of the DC voltage during the unbal-
anced fault, modified controllers are introduced into the control system to improve
the system dynamics.

- comparisons of the simulation results for both the complete and simplified VSC-
HVDC models show good agreements between the two models during transients as
well as during steady state.

A new control strategy of the VSC-HVDC system for providing a high-quality sup-
ply to industrial plants are proposed. In the proposed control strategy, a frequency con-
troller and an AC voltage controller are implemented in the inverter station of the VSC-
HVDC. The motivation of choosing this control strategy is to exploit the inertia of the
rotating masses by slightly decreasing the frequency of theVSC-HVDC output voltage
when needed. Thus, a momentary surplus of energy is created in the rotating masses of
the motors to ride through disturbances such as AC faults andmotor starting. In order to
validate the proposed control strategy, the dynamic performance of a VSC-HVDC sup-
plied industrial plant is investigated during various disturbances. The simulation results
illustrate that

- the VSC-HVDC has the possibility to control the AC voltage and frequency at the
PCC to ride through disturbances.

- by comparisons of the performance of the load with a conventional AC supply and a
VSC-HVDC supply, it is demonstrated that the use of the VSC-HVDC significantly
enhances the quality of power supply to industrial plants during faults at the sending
side of the VSC-HVDC.

- during motor starts, it takes a longer time to start, the AC voltage at the PCC drops
deeper and the frequency is not constant as compared with a pure AC supply.
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- the rating or current limit of the VSC-HVDC converter significantly influences the
performance of the system during disturbances. An increaseof the rating of the
VSCs significantly improves the power quality of the system.

Different frequency controllers, i.e. fixed frequency controller with constant ref-
erence frequency, fixed frequency controller with various reference frequency regarding
DC voltage dynamics of the DC link, a PI frequency controller, and their effects on the
voltage disturbance ride-through capability of a VSC-HVDC supplied industrial system
are studied and presented. It shows that

- during small disturbances such as motor starts the system collapses when the in-
verter station uses the fixed frequency controllers with constant reference frequency
and with various reference frequency whereas the system canavoid a voltage col-
lapse with the use of a PI frequency controller without overrating the VSC.

- during three-phase grid faults, the system survives without a voltage collapse or
excessive voltage sags after faults without overrating theconverter when a PI fre-
quency controllers is used.

- the effect of increasing the capacitor size instead of the converter size on improving
the power quality of a VSC-HVDC supplied industrial plant is also investigated.
Simulation results show that it is possible to improve the system voltage disturbance
tolerance by increasing the DC capacitor on the DC bus. However, an overcurrent
of the converter occurs at the end of the fault.

A VSC-HVDC supplying an industrial plant with on-site generation has been in-
vestigated when the generator has an exciter and the turbinehas a frequency controller.
The control strategy utilized in the VSC-HVDC system is that the rectifier controls the
DC voltage and the AC voltage at the grid, whereas the inverter controls the AC voltage
and frequency at the PCC. A detailed analysis of two frequency control algorithms, i.e.
a PI frequency controller and a droop frequency controller in the inverter has been per-
formed. The system dynamics has been investigated under various operation conditions
and during grid faults. From the simulation results it can beconcluded that

- different frequency controllers in the inverter have different responses on the sys-
tem. When the inverter uses a PI frequency controller, the frequency at steady state
resumes to the nominal value. However, a potential instability problem may occur
when the size of the VSC-HVDC is limited. When the inverter usesa droop fre-
quency controller the VSC-HVDC shares the load change with the generator. How-
ever, there is a steady state frequency fault if not a secondary frequency control is
used.
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- by comparing the dynamic behavior of the system when the inverter uses a PI fre-
quency controller and the turbine operates in constant power production mode, fre-
quency control with no reheat turbine mode or frequency control with reheat tur-
bine mode it can be obtained that the system frequency recovers faster when the
turbine works with frequency control with no reheat turbine. However, the system
transients are more or less the same when the turbine works inthe three different
modes. Therefore, another comparison has been made when theVSC-HVDC size
is reduced to certain percent of the total load, the generator size is varied and the
turbine is equipped with or without frequency control. The comparison shows that
with the use of the frequency controller at the turbine the frequency drop reduces
during both the motor starts and the grid faults.

- a comparison of a VSC-HVDC feeding an industrial plant with apure AC supply
of the same industrial plant shows that the VSC-HVDC can mitigate voltage dips in
the grid and the power quality of the industrial customers supply can be significantly
improved.

- the converter current limit, different levels of power production and sizes of the
synchronous generator have significant impacts on the dynamic response of the
system.

In the end, it can be concluded that the VSC-HVDC has a number ofadvantages
as compared with classic HVDC or AC transmission and it is suitable for a wide range
of situations when properly designed and operated. We will likely see more VSC-HVDC
applications in future power systems.

6.2 Future work

As previously described, VSC transmission and distribution have some disadvantages,
which include potentially high losses and costs. However, the technology continues to
evolve. To further assess the potential and limitation of VSC transmission and distribution
for industrial power systems, a number of possible applications and advancements in the
VSC technology are required such as

- faults and protection

Faults in the DC system remain a serious concern. One of the problems is that
the fault currents are limited by the converters. This may make it difficult to apply
existing protection strategies. Protection of the DC network is strongly related to
the reliability of the network. Fast and reliable DC circuitbreakers are a possible
solution.
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- industrial systems with VSC-HVDC and internal multilevel DC network

In an industrial system with internal DC distribution, all drive systems are mounted
on the same DC-bus, the energy in the rotating masses will thenbe delivered to the
common DC-bus by slightly decreasing the frequency of the VSCoutput voltage.
There is a higher flexibility in this situation, in that the frequency reduction can be
applied selectively only to those machines that are not sensitive, while the stored
energy through the DC-bus can be used to keep the critical oneson line. Further
improvement can be obtained by connecting some additional storage to the common
DC-bus. This can result in a more cost-effective solution than increasing the storage
(capacitor size) at each DC-bus of the individual drive system, as it is done in the
traditional AC solution to increase the ride-through capability of the drive.

- industrial systems with VSC-HVDC and bypass switches

To prevent industrial system interruptions due to failure of the VSC-HVDC system
components, the use of a bypass switch may be considered.

- VSC-HVDC connecting weak AC systems

When the VSC-HVDC is connected to a weak AC system characterized by a lower
short-circuit power, a number of difficulties concerning the operation and design
emerge. They are, among others, low resonant frequencies and control strategies
for achieving optimal active power flow. More research is required to address those
problems.
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