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Abstract 

 
 
The loadability of electric machines is above all determined by temperature lim-
its. In this work, thermal network models, suitable for totally enclosed fan-cooled 
(TEFC) induction motors, are used to predict the machine temperatures. 
 
Two specific models are suggested: one with 107 nodes, which primarily is in-
tended as a design tool, and one with 7 nodes, for increased simplicity. The 
steady-state solution method is valid in a broad speed-range and for variable 
load. Time-dependent solutions are obtained as a function of four input variables: 
frequency, stator voltage, torque, and ambient temperature. 
 
The thermal resistance calculation is emphasized in the work. For the purpose of 
identifying unknown thermal resistances, some identification techniques are 
suggested, that use measured steady-state temperatures as boundary conditions. 
Empirical formulas are suggested for heat transfer coefficients of various parts of 
the machine. The stator windings are modelled using a rectangular geometry 
with a surrounding equivalent air pocket. A discussion about the optimum 
number of nodes in a thermal network and a sensitivity analysis are included in 
the study. Experimental investigations are performed on a 4 kW and a 15 kW 
induction motor. The resistive losses are calculated using the equivalent circuit 
of the induction machine. The stator core losses are calculated by a two-
dimensional, time-stepping finite element method. Friction and windage losses 
as well as additional losses are measured. Comparisons between measured and 
calculated temperatures show that good agreement can be expected if the heat 
transfer coefficient between the frame and the ambient and the additional losses 
are known.  
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List of symbols 
 
A  area  [m2] 
Ab  cross-sectional area of a rotor bar  [m2] 
ACu  copper area in a stator slot  [m2] 
Af  cross-sectional area of the fins  [m2] 
Ar  cross-sectional area of a rotor end ring  [m2] 
Bmax  maximum value of the flux density  [T] 
b  thickness or width  [m] 
C, Cth  thermal capacity  [J/K] 
c  heat capacitivity  [J/kg.K] 
d  diameter or thickness  [m] 
da  air pocket thickness  [m] 
db  average bearing diameter  [m] 
dh  hydraulic diameter  [m] 
di  slot insulation thickness  [m] 
Fg  geometry factor 
f  frequency  [Hz] 
Gr  Grashof number 
g  acceleration of gravity  [m/s2] 
h  height  [m], time-step [s] 
I0  no load current  [A] 
Is  stator current  [A] 
Isa  active component of the stator current [A] 
Ir  rotor current  [A] 
kFt  eddy current loss factor 
kHy  hysteresis loss factor 
kL  skin effect factor for the inductance 
kR  skin effect factor for the resistance 
L,l  length  [m] 
Lm  magnetizing inductance  [H] 
lav  average conductor length of half a turn  [m] 
lb  length of a rotor bar  [m] 
lc  stator core length  [m] 
lov  average conductor length of the winding overhangs  [m] 
lr  length of a rotor end ring segment  [m] 
m  mass  [kg] 
Nu, Nud Nusselt number 



8 

P  power  [W] 
Pbar  losses in the rotor bars  [W] 
PCus  resistive losses in the stator winding [W] 
PCur  resistive losses in the rotor winding [W] 
Pd  nodal losses  [W] 
PFes  stator core losses due to the main flux  [W] 
Pf  losses due to friction and windage  [W] 
Pring  losses in the rotor end rings  [W] 
Psk  losses due to the skew leakage flux  [W] 
Pst  combined additional and no-load stray losses  [W] 
Pstr  combined additional and no-load stray losses in the rotor  [W] 
Pt  losses in the stator teeth  [W] 
Ptot  total machine losses  [W] 
Py  losses in the stator yoke  [W] 
P0  total flux-dependent losses at no load  [W] 
Pr  Prandtl number 
p  number of pole pairs 
Q  loss density  [W/m3] 
Qr  rotor slot number 
Qs  stator slot number 
q  heat flux  [W/m2] 
R, Rth  thermal resistance  [K/W] 
Re, Red Reynolds number 
Rm  iron loss resistance  [Ω] 
Rs  stator resistance  [Ω] 
Rr  rotor resistance  [Ω] 
r  radius  [m] 
rδ  average radius of the air gap  [m] 
s  slip 
T  temperature  [°C], torque [Nm] 
(Ta)m  modified Taylor number 
Tav  average temperature  [°C] 
Tmax  maximum temperature  [°C] 
Tw  surface temperature  [°C], [K] 
Ts  shaft torque  [Nm] 
T∞  reference temperature  [°C], [K], free stream temperature  [°C] 
∆T  temperature drop over the air gap [K] 
t  time  [s] 
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Um  voltage corresponding to air-gap flux [V] 
Us  phase voltage  [V] 
u  air velocity  [m/s] 
uf  fan peripheral speed  [m/s] 
ur  rotor peripheral speed  [m/s] 
Xm  magnetizing reactance  [Ω] 
Xsλ  leakage reactance of the stator  [Ω] 
Xrλ  leakage reactance of the rotor  [Ω] 
x, y, z  space coordinates  [m] 
 
C  thermal capacitance matrix 
G  thermal conductance matrix 
P  loss vector 
T  temperature vector 
Θ  temperature rise vector 
 
α  heat transfer coefficient  [W/m2K]  
αde  heat transfer coefficient of the drive side end shield  [W/m2K] 
αfe  heat transfer coefficient of the fan side end shield  [W/m2K] 
β  volume coefficient of expansion [1/K] 
∆  sheet thickness  [m] 
δ  air gap, taking thermal expansion into account  [m] 
δe  equivalent air gap, taking Carter factors into account  [m] 
δR  skin depth  [m] 
δ0  air gap without thermal expansion [m] 
ε  emissivity 
θ  temperature rise  [K]  
θf    temperature rise  of the frame [K] 
κFe  thermal expansion coefficient of iron [1/K] 
λ  thermal conductivity  [W/m.K] 
λa  thermal conductivity of air [W/m.K]  
λf  thermal conductivity of a fluid [W/m.K] 
λi  thermal conductivity of the slot insulation [W/m.K] 
λimp  thermal conductivity of the slot impregnation [W/m.K] 
λs  thermal conductivity of the slot material [W/m.K] 
λx, λy, λz thermal conductivity in different spatial directions [W/m.K] 
µ  dynamic viscosity  [kg/m.s] 
µ0  permeability of free space  [Vs/Am] 
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ν  kinematic viscosity  [m2/s] 
ρ  density  [kg/m3] 
ρe  resistivity [Ωm] 
σ  Stefan-Boltzmann's constant [W/m2K4], relative skew 
ω  angular speed  [rad/s] 
ξ  height to skin depth ratio 
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1 Introduction 
 
The main limiting factor for how much an electric machine can continuously be 
loaded, is usually the temperature. Exceeding the thermal limits results in vari-
ous undesired phenomena: The oxidation process in insulation materials is accel-
erated, which eventually leads to loss of dielectrical property. Bearing lubricants 
may deteriorate or the viscosity may become too high, resulting in reduced oil 
film thickness. Other problems are mechanical stresses and changes in geometry 
caused by thermal expansion of the machine elements.  
 
Because of these problems, the temperatures in electric machines must be kept 
below certain limits. In order to predict the machine temperatures, thermal 
models are employed, that can be used to improve the machine design or to de-
termine the loadability during different operating conditions. If the thermal 
model is used in the design process, it must properly represent the effects of de-
sign modifications, thus allowing a systematic procedure of optimization. This 
means in general that a fairly complex model is necessary. If the thermal model 
is used for determining the loadability of an existing machine, a simpler model 
can be used. The most important difficulties lie in the loss calculation, the deter-
mination of the heat transfer from the frame to the ambient, and in the model-
ling of the stator windings and the bearings. An example of a possible 
application of the thermal model is in the control of wind turbine generators. If 
the generator is operated at the thermal limit rather than at the rated power 
limit, it can convert more wind energy to electrical energy and thus generate 
more profit. A thermal model can also be used to determine allowable short-time 
overloads. 
 
The most frequently used thermal models are lumped parameter models [1,2] 
and numerical methods like the finite element method [3,4]. A lumped 
parameter model, often referred to as a thermal network model, gives the 
average and, for some assumptions, maximum temperatures of the elements 
within the machine. Its advantages lie in its simple mathematical form and easy 
implementation. By the finite element method, heat conduction problems can be 
solved more accurately than by a thermal network. The finite element method is 
particularly well suited for solving transient or steady-state problems with large 
temperature gradients within individual machine parts, e.g. high-inertia starts, 
unbalanced operation or thermal asymmetries caused by ventilation failure in 
large machines. A drawback of the finite element method is that three-
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dimensional and time-dependent problems are demanding both in software 
development and hardware requirements. For normal operation of small 
machines the finite element method is less suited, because the temperature 
gradients within distinct machine parts are small, which makes the lumped-
parameter approach more natural. 
 
The present work deals with lumped parameter models. The goal is to design a 
suitable thermal model that can be used as a tool for constructing cage induction 
motors and to describe all related problems and aspects of implementation. In 
particular the following problems are to be investigated: 
 
 • method and level of discretization of the machine 
 • identification of unknown thermal resistances 
 
Many earlier publications [1,2,5,6,7,8] propose a relatively small number of 
elements in the thermal model. However, in this work, the machine is discretized 
by a significantly larger number of elements, which gives more information 
about the axial temperature distribution in the machine. Much of the earlier 
work [2,6,7,8] also suffers from the lack of a detailed study of the thermal 
resistances, which makes it difficult to apply the suggested models on arbitrary 
machines. The present work focuses more on the analysis of the thermal 
resistances and gives fairly straightforward rules for their calculation. The work 
concentrates on totally enclosed fan-cooled (TEFC) induction motors and much of 
the findings is based on experimental results from a 4 kW and a 15 kW induction 
motor. 
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2 Measurements 
 
2.1 Test motors 
 
The test machines are standard cage induction motors. The first machine is an 
ABB MBT180L with a rated power, current and speed of 15 kW, 32 A and 970 
rpm, respectively. The second machine is an ABB MBT112M with a rated power, 
current and speed of 4 kW, 9 A and 1435 rpm, respectively. The rated voltage is 
380 V and the rated frequency 50 Hz for both machines. The cross-section of the 
slot geometries is shown in Figs 1–2. The machines are shown in Figs 3–4. Geo-
metrical data and winding data of the machines are given in Appendix A 
together with the parameters of the equivalent circuit. 
 

10 mm 10 mm

 
Figure 1. Slot geometry of the    Figure 2. Slot geometry of the  
15 kW machine.      4 kW machine. 
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Figure 3. The  4 kW test motor.  
 
 
 
 

 
Figure 4. The  15 kW test motor.  
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2.2 Measurement of electrical and mechanical quantities 
 
About 30 experiments were carried out for each test machine. Most of them were 
tests with constant load and frequency at a sinusoidal stator voltage. The ma-
chine was loaded until thermal equilibrium was reached, and then temperatures, 
torque, current, voltage, electrical power and speed were measured. Locked-rotor 
tests and tests with injected DC current in the stator windings were made at 
standstill. A few tests with transient temperature measurements and varying 
load were also performed. Thermal equilibrium was reached after approximately 
4 hours for the larger machine and 2 hours for the smaller machine (depending 
on the speed). The voltage source was a synchronous generator, whose speed and 
excitation were controlled (see Fig. 5). Frequencies between 10 and 90 Hz were 
used. The test machines were star-connected, operated as motors and were 
loaded by converter-controlled DC machines.  
 

AC

DC

digital
Wattmeter

T

torque
measurement

380 V

380 V

synch.
generator

DC
generator

test
motor

speed control voltage control

P, U, f, I

Schrage
motor

 
 
Figure 5. Experimental setup. 
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2.3 Temperature measurements 
 
The location of the temperature sensors is shown in Figs 6 and 7. T-type thermo-
couples were used for the stator. The rotor temperatures were measured with 
platinum rtds (resistance thermometer devices). Insulated, twisted copper-wires 
were used as lead-ins. The wires were led through a drilled hole in the shaft and 
connected to a slip ring device on the fan side. 
 

Rotor

3 7 8 20 4

5

6

2

1

21-26 27-32

33-39

9-19

40 41

42 43 44 45 46

47

Stator

 
Figure 6. Location of the temperature sensors of the 15 kW machine. End shields: 
1–6, Frame: 7–20, Stator end windings: 21–32, Rotor bars: 33–39, Internal air: 
40–41, Shaft: 42–46, Bearing: 47. 
 

Rotor

3 4 5 12 13

21

14-16 17-19

21

6-11

22 23

24

20

Stator

 
Figure 7. Location of the temperature sensors of the 4 kW machine. End shields: 
1–3, Frame: 4–13, Stator end windings: 14–19, Rotor bars: 20–21, Internal air: 
22–23, Shaft: 24. 
 
In the 15 kW rotor, 11 rtds were attached equally spaced along the shaft and ro-
tor surface. A 3 mm deep slot was milled in a rotor bar for the sensors and their 
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lead-in wires. The joints between the rtds and the lead-ins were insulated with 
Araldite. The sensors that were attached to the shaft were put down in small 
grooves made by a hack saw. On the 4 kW rotor, only three rtds were used, and 
they were measured without slip-ring device, by first stopping the rotor, measur-
ing during some time, and then extrapolating the data points linearly back to the 
switch-off moment. No problems were encountered except that some of the rtds 
stopped working, probably because the soldering loosened. 
 
The frame temperatures were primarily measured by T-type thermocouples hav-
ing an uninsulated diameter of 0.2 mm and a teflon insulation of 0.15 mm thick-
ness. An infra-red camera was also used, that was useful for determining the 
temperature differences along the frame, but could not be used to determine the 
absolute temperature, since the emissivity of the surface must then be exactly 
known. Because of this, the infrared camera was mainly used to check the 
readings of the thermocouples and to visualize the temperature distribution of 
the frame. The thermocouples were inserted and glued into small drilled holes, so 
that their positions were well defined. Despite the fact that thermally conducting 
glue (Electrolube TBS20S) was used, the cooling air in fact cooled down the 
thermocouples several degrees below the real temperature of the frame. To 
eliminate this problem, a length of about 2 cm of the thermocouple wires were 
covered by insulation tape along the bottom of the cooling channel.  
 
Stator winding temperatures were measured by the resistance method and by 
thermocouples attached to the end windings. In the 15 kW machine, six thermo-
couples were placed on the fan side end windings and another six thermocouples 
were placed at the corresponding positions on the drive side end windings. In the 
4 kW machine, three thermocouples were placed at the fan side and three at the 
drive side. To get a good thermal contact, the thermocouples were inserted into 
natural cavities in the end windings and bonded by Araldite.  
 
The resistance method was used in the following way: After switch-off, a constant 
DC current was injected between two phases, and the voltage was measured by a 
computer during five minutes. The time between switch-off and the first mea-
surement was measured manually, and the resistance of the stator windings at 
switch-off was obtained by linear extrapolation. 
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The average temperature of the stator windings was calculated from the relation 
 
 

    
R = R 0

235°C + T

235°C + T0
        (1) 

 
where R is the resistance at temperature T and R0 is measured at T0 = 20°C.  
 
The temperature of the internal air was measured by rtds on the fan side and the 
drive side. The temperature of the drive side bearing of the 15 kW machine was 
measured by a thermocouple applied on a sealing plate. Naturally, the tem-
perature of the ambient air was also measured. Figure 8 shows the different 
types of temperature sensors that were used. 
 
 
 
 

 
 
Figure 8. Temperature sensors from the left: three 100 Ω rtds, of which the second 
to the left was mostly used. To the right there is a T-type thermocouple. 
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2.4 Measurement errors 
 
The specified tolerance of the thermocouples is 1.1 K in the relevant temperature 
range. All thermocouples were connected to a switch box by an adapter and com-
pensation wire. The adapter was fastened to the machine base, enabling move-
ment of the machine without having to bring along the box and the compensation 
wire. The temperature inside the switch box was measured by a calibrated rtd, 
whose accuracy is significantly better than that of a thermocouple. The thermo-
electric voltages were measured with a resolution of 0.01 mV and an accuracy of 
0.02 mV in the relevant temperature range, which corresponds to a maximum 
error of 0.6 K. All thermocouples and compensation wires were cut from the same 
reel of thread, which should lead to small individual variations. The rtds follow 
DIN 43760, class B, which means that the tolerance increases linearly with 
temperature; 0.3 K at 0°C and 0.8 K at 100°C. An error of 0.2 K can be added to 
this as a result of the ohm-meter error and the thermal drift of the lead-in 
resistance. The resulting maximum errors are 1.7 K for the thermocouples and 
1.3 K for the rtds, and do not include the effects of imperfect thermal contact to 
the measurement object.  
 
The main source of error when using the resistance method is probably that the 
purity of the copper is not exactly known. The resistance of a copper wire is 
partly due to the copper and partly due to impurities. The resistivity of copper is 
a linear function of temperature, but the resistivity due to impurity is constant 
[9]. Commercial copper wires are specified for a minimum of 97 % of the conduc-
tivity of pure copper. With exactly 97 % conductivity Eq. (1) is correct, but with, 
say, 100 % conductivity the number 235 becomes 228 in Eq. (1). This means that 
the resistance method would overestimate the temperature rise of a pure copper 
sample by 2.5 %, assuming negligible error in the resistance measurement. Thus, 
an error of 0–2.5 % can be expected for 97–100 % of the conductivity of pure cop-
per. The error caused by the resistance measurement in itself is estimated to 
max. 3 %. 
 
The two HBM T30FN torque measurement devices use strain gauges. Without 
going through the details, the accuracy is approximated to 1 % [10]. The Yoko-
gawa 2533 wattmeter is digital and its accuracy is in the order of 0.2 %. The 
speed measurement accuracy is in the order of 0.1 %. The resulting accuracy of 
the total loss measurement then becomes approximately 8 % at an efficiency of 
84 %, which is the measured rated efficiency of both test motors. 
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3 Loss modelling 
 
3.1 Losses in induction machines 
 
The losses in induction machines are defined in the IEC standard 34-2 [11], 
which also suggests how loss measurements can be performed. A distinction is 
normally made between no-load losses, that mainly depend on the voltage, and 
load losses, that are current-dependent. If the supply voltage is sinusoidal, the 
losses usually only have to be calculated for one frequency. For a variable-speed 
drive fed by a convertor, there are the additional problems of frequency depen-
dence and harmonic losses. 
 
 
No-load losses 
 
The following losses can be expected at no load with sinusoidal supply: 
 
(a) core losses in the stator teeth and yoke, due to the main flux 
(b) no-load stray losses  
(c) losses due to friction and windage 
 
The term no-load stray losses is here used for losses that are due to space har-
monics and consequently are not of fundamental frequency. These are tooth 
pulsation losses, surface losses, losses due to interbar currents and circulating 
currents in the rotor [12,13,14,15,16,17,18,19]. Apart from the terms (a) to (c), 
there are of course also some resistive losses due to the no-load current.  
 
 
Load losses 
 
The load losses at sinusoidal supply voltage are: 
 
(a)  resistive losses in the stator winding 
(b)  resistive losses in the rotor winding 
(c) additional losses due to leakage flux and mmf space harmonics 
 
The additional losses consist of similar components as the no-load stray losses. 
End losses and losses due to the skew leakage flux are also part of the additional 
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losses. 
 
Losses at non-sinusoidal supply voltage 
 
The dominating harmonic losses are 
 
a)  resistive losses in the stator and rotor windings caused by the harmonic 
 currents and by skin effect 
b) core losses and surface losses caused by the harmonic flux 
 
It is often assumed that the harmonic losses are of the no-load type, but accord-
ing to Nee [20], the harmonic losses increase with the load. This effect is due to 
saturation of the harmonic leakage flux path, which decreases the leakage reac-
tance and thus increases the harmonic currents. 
 
 
3.1.1 Resistive losses 
 
The fundamental resistive losses of the stator and rotor are given by 
 
     PCus = 3R sIs

2          (2) 
     PCur = 3R r Ir

2          (3) 
 
where R and I are the resistance and current per phase, respectively, and the 
indices s and r stand for the stator and rotor, respectively. For the small wire 
diameter used in the stator windings of smaller TEFC motors, the skin effect of 
the stator windings can be neglected when the supply voltage is sinusoidal. 
Correction for the resistance change with temperature for copper can be made by 
Eq. (1). 
 
Concerning the resistive losses in the rotor, it is assumed that the skin effect can 
be neglected for the fundamental rotor current. Correction for the resistance 
change with temperature for aluminium can be made by  
 
 

    
R = R 0

245°C + T

245°C+ T0
        (4) 
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To separate the losses of the end rings from the losses of the bars, the following 
ratio of bar losses to ring losses can be used 
 
 

      

Pbar

Pring
= 2 sin2 πp

Q r

 
   

  lbA r

A blr
       (5) 

 
where p is the number of pole pairs, Qr is the number of rotor slots, Ab and lb are 
the area and length of a rotor bar, respectively. Ar and lr are the area and length 
of a ring segment (i.e. between two bars), respectively. 
 
 
3.1.2 Fundamental core losses 
 
The core losses consist of hysteresis losses and eddy current losses. The hystere-
sis losses are proportional to the frequency and proportional to     B max

1.6−2.4 
(depending on saturation) where Bmax is the peak flux density. In practice, hys-
teresis losses are commonly assumed to be proportional to     B max

2 . The eddy cur-
rent losses are proportional to the square of both the frequency and Bmax. Thus 
the core losses per mass unit are 
 
 

    
Q = (k Hy f + k Ft f 2 )B max

2         (6) 
 
where kHy and kFt are the loss factors of the material, and f is the frequency. The 
eddy current loss factor is according to Richter [21] 
 
 

    
k Ft = 4.44∆( )2

12ρρe
         (7) 

 
where ρe is the resistivity, ρ the density and ∆ the lamination sheet thickness. 
The sum of the eddy current losses and hysteresis losses is usually available 
from Epstein tests at 50 or 60 Hz. However, the real losses of a stator core can be 
50–100 % larger than the calculated ones. The losses are increased due to har-
monics of the field variation and due to manufacturing (e.g. punching of the 
sheets). Temperature also effects the losses. 
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3.1.3 Friction and windage losses 
 
The friction losses are located in the bearings and in the bearing sealings. The 
losses due to the sealings may in fact be larger than the actual bearing losses. 
The bearing friction torque consists of a constant part, that depends on the bear-
ing forces, and a hydrodynamical part, which is strongly temperature-dependent 
and speed-dependent. The hydrodynamical part is usually dominant over the 
constant part. The bearing friction torque can be calculated using a method de-
scribed by SKF [22]. The windage losses are mainly due to the fan. The windage 
losses are proportional to the cube of the speed, and do not lead to heating of the 
machine, since the energy is used to accelerate the cooling air. There are also 
some losses due to air gap friction, but these are small compared to the fan 
losses.  
 
The total friction and windage losses can be measured by running the machine 
at no load at very low voltages. This is done by plotting the input power against 
the square of the voltage, and then extrapolating to zero voltage. The intersec-
tion corresponds to the total friction and windage losses. If a test is performed 
with the fan removed, the friction losses can be separated from the windage 
losses. If also the bearing sealings are removed, the bearing losses can be sep-
arated from the sealing losses. Figures 9 and 10 show the windage and friction 
losses of the two test machines separated in this way. Even though the machine 
was practically cold during this test, it was necessary to wait about 1 hour before 
the bearing losses had become stabilized. 
 

fan, 9 W bearings, 7 W

rubber sealing, 15 W

    

fan, 20 W

bearings, 28 W

rubber sealing, 7 W

 
Figure 9. Friction and windage losses, Figure 10. Friction and windage  
4 kW-machine, rated speed.   losses, 15 kW-machine, rated speed. 
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3.1.4 No-load stray losses and additional losses 
 
The slots in induction machines cause permeance waves, that produce no-load 
stray losses in both the stator and the rotor. The nonsinusoidal mmf distribution 
in the air gap and the saturation of the magnetic circuit further add to the space 
harmonics. Some of the no-load stray losses are caused by eddy currents in the 
rotor teeth. These losses are usually divided into surface losses and tooth 
pulsation losses, where the surface losses are treated separately because they 
only appear in a thin surface layer, while the pulsation losses penetrate deeper. 
The penetration depth of the pulsations depends on the design of the rotor cage. 
Since each rotor tooth is surrounded by short-circuited rotor bars, circulating 
currents will occur which limit the penetration depth of the permeance waves. 
The surface losses are influenced by the finish of the rotor surface. 
 
The magnitude and nature of the stray losses depend on if the rotor bars are 
skewed or not. Rotors with non-skewed bars were discussed by Alger [12, 13], 
who suggests some empirical relations. The non-skewed problem was also 
analysed by Arkkio [14,15], who used time-stepping finite element analysis to 
calculate the losses, both at load and no-load. Skewed bars were treated by 
Cristofides [16]. In rotors with non-skewed bars the losses due to circulating 
currents are relatively larger and the tooth eddy current losses smaller than 
with skewed bars.  
 
When the bars are skewed and uninsulated, there are also resistive losses caused 
by interbar currents. The losses due to interbar currents can be large, and de-
pend among other things on the contact resistance between the bars and the ro-
tor core. The losses are described by Odok [18] and Cristofides and Adkins [19], 
who performed measurements on 5 kW induction motors with different rotors. 
The interbar currents decrease with ageing, since layers of oxide are formed at 
the interface between the bars and the core.  
 
Additional losses are the total load losses minus the fundamental resistive 
losses. They are basically of the same kind as the no-load stray losses, but much 
increased due to the mmf-waves occurring at load. A part of the additional losses 
is also the end losses, which depend on axial leakage flux that penetrates the 
rotor and stator ends and to a certain extent the end shields and the frame. The 
end losses are influenced by the distance between the end windings and other 
conducting machine details. According to Alger et al. [12], the losses are 0.3 
times the apparent power in that part of the end winding reactance that is due to 
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flux penetrating the stator core axially. Applying this rule for the test motors 
results in rather small end losses. A rotor-removed test for the 15 kW motor also 
implied that the end losses are small for induction machines of the same size as 
the test motors [10]. 
 
Another component of the additional losses, that also increases the core losses at 
the ends, is caused by skew. If the rotor bars are skewed, there is a phase dis-
placement of the fundamental mmf-waves of the stator and rotor at the two ends 
of the core. This causes a certain increase in the peak flux at the ends, which ex-
plains the extra losses, which according to [12] are given by 
 
 

    

Psk = π
2P0

12

2pσIsa

QsI0

 
   

  
2

        (8) 

 
where σ is the ratio of skew to one stator slot pitch (normally 1), Isa is the active 
part of the stator current, I0 is the no-load current and P0 is the no-load core 
losses. 
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3.2 Current and slip calculation 
 
In order to calculate the resistive losses, the stator and rotor currents are 
needed. The currents are primarily functions of the torque, frequency and volt-
age. The slip is needed to calculate the speed of the machine, which influences 
some of the parameters of the thermal model. 
 
 
3.2.1 Equivalent circuit 
 
A specific induction machine can be represented by the equivalent circuit shown 
in Fig. 11. The equivalent circuit is only used for the fundamental voltage com-
ponent. If the supplying voltage is nonsinusoidal, the harmonic currents and 
losses can be calculated using equivalent circuits for harmonics. 
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Figure 11. The equivalent circuit of the induction machine. 
 
Rs and Rr are the stator and rotor resistances per phase. Xsλ and Xrλ are the sta-
tor and rotor leakage reactances per phase. Xm is the magnetizing reactance, Us 
is the phase voltage, s is the slip and Rm is a resistance used to model the stator 
core losses. The two currents can be solved from an equation system consisting of 
two complex equations. Usually Rm>>Xm, which leads to 
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The parameters are not constant. Rs, Rr and Xm are temperature-dependent (Xm 
because the air gap changes with temperature). All reactances and also Rm are 
frequency-dependent. Xm is also flux-dependent, due to saturation. The equation 
system can not be solved in one step; a few iterations must first be passed 
through. This is because the slip is not known from the beginning and, conse-
quently, an initial value must first be assumed. Usually, the additional losses 
are neglected and the no-load core losses are modelled by Rm. However, if there 
is a large portion of additional losses or no-load stray losses, this will cause 
errors when computing the currents. Basically, the additional losses and the no-
load stray losses act as a brake upon the rotor [23] and should consequently be 
treated as an extra load. For the shaft torque Ts, we then have 
 
 

    
Ts =

3pR r I r
2

2πfs
±

(Pf + Pst )

ω
        (10) 

 
where the plus sign is valid if s is negative. Pst is the combined additional losses 
and no-load stray losses, and Pf is the friction losses. 
 
The flux dependence of Xm is only worth considering if the machine is operated 
on a non-constant flux basis or as a generator. To calculate Xm, no-load tests 
were performed at different voltages at  50 Hz, see Fig. 12. 
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Figure 12. No-load curves for the test machines at 50 Hz. 
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The no-load test is performed with a cold machine for different values of the emf 
Um induced by the fundamental air-gap flux. A function Xm=g(Um), which is 
valid for 50 Hz, can be constructed from the data points. To calculate Xm for 
other frequencies and to include the temperature dependence the following for-
mula is used 
 
 

    
X m = g U m

f0
f

 
   

  f

f0
k δ         (11) 

 
where f0=50 Hz and the factor kδ accounts for air gap shrinkage, caused by ther-
mal expansion of the rotor, and is calculated by 
 
 

    
k δ =

δe

δe − κFerδ∆T
        (12) 

 
where δe is the equivalent air gap of a cold machine, κFe is the thermal 
expansion coefficient of iron, rδ is the average radius of the air gap, ∆T is the 
temperature drop over the air gap.  
 
In Fig. 13, a flow chart is shown of a program that solves Eq. (9) and calculates 
the losses of the machine. To get a fast solution, the new value of the slip should 
be properly chosen for each iteration. A fast convergence is obtained by using 
 
 

    
s k = s k −1 + c

f0Terr

f
        (13) 

 
where Terr is the error in the torque calculation. The constant c is specific for the 
machine and should be chosen as the ratio of the rated slip to the rated torque. 
Equation (13) gives convergence for generator operation as well as for motor 
operation and for operation near the synchronous speed. 
 



  29 

Inputs

Calculating R s, R r, R m, Xsλ, Xrλ, Pf, Pst

Calculating initial values of s , X m

Ts, f, U1,
temperatures

Solving Eq. (9)

Calculating new values for Ts, Xm, ω

Terr  too large?

Calculating new
value for s

YES

NO

PFes =
3U m

2

R m

PCus = 3R sIs
2 PCur = 3R r I r

2

 
 
Figure 13. Flow chart for a program that calculates the losses due to the funda-
mental currents and flux. 
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3.2.2 Equivalent circuit for harmonics 
 
It is assumed that the influence of the load and the harmonic iron losses can be 
neglected, an assumption that is commonly made [20]. The effect of harmonic 
voltages on an induction motor can then be evaluated by the use of equivalent 
circuits and the principle of superposition [24]. An independent equivalent circuit 
can be developed for each harmonic frequency, and each harmonic voltage can be 
applied to its respective equivalent circuit. The total harmonic loss is then equal 
to the sum of the losses of each equivalent circuit. As a general rule, the order of 
harmonics from three-phase converter equipment is given by n = 3k ±1, where + 
and – signify positive and negative phase sequences, respectively. Assuming bal-
anced supply and symmetrical load, there are no even harmonics, which means 
k=2,4,6,... For small values of the fundamental slip, the harmonic slip is given by 
 
 

    
sn =

3k

3k ± 1
          (14) 

 
The harmonic slip is thus close to unity, which makes it possible to neglect Rm 
and Xm in the equivalent circuit for harmonics, shown in Fig. 14.  
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jXsλn jX rλn

R rn
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Usn
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Figure 14. Equivalent circuit for harmonics. 
 
 
Skin effect factors 
 
The skin effect is small for random-wound stator windings, but not entirely neg-
ligible for harmonics. The skin effect of the end windings can be neglected. A 
skin effect factor for the slot part of the stator winding resistance, valid for 
circular conductors in rectangular slots, is given by Schuisky [25].  
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Skin effect factors of rotor bars are best calculated by the finite element method, 
but for some slot shapes, e.g. rectangular or circular, simple formulas can be 
used. If the top of the bar is rectangular or wedge-shaped, it may be possible to 
neglect the rest of the bar and calculate the skin effect factor as for a rectangular 
bar. This is possible if the skin depth, given by 
 
 

    

δR =
ρe

πµ0f
         (15) 

 
is at least 2–3 times smaller than h, the height of the rectangular top-of-bar seg-
ment. The skin effect factor for a rectangular bar is according to Schuisky [25] 
 
 

    
k R = ξ sinh (2ξ )+ sin (2ξ )

cosh (2ξ )− cos (2ξ )
       (16) 

 
where  
 
 

    
ξ = h

δR

          (17) 

 
The skin effect of the end rings is according to Schuisky small compared with the 
skin effect of the bars, and since the resistance of the bars is larger than that of 
the end rings even at fundamental frequency, the skin effect of the end rings can 
be neglected. 
 
The rotor slot leakage inductance has a non-linear frequency dependence; it de-
creases with frequency. A skin effect factor for the rotor slot leakage inductance 
of a rectangular rotor slot is given by 
 
 

    
k L =

3

2ξ
sinh (2ξ ) − sin (2ξ )

cosh (2ξ ) − cos (2ξ )
       (18) 

 



32 

3.3 Losses of the test motors 
 
The total losses of the two test machines were measured by subtracting the out-
put power from the input power. The output power was obtained by measuring 
the shaft torque and the speed, and the input power was measured by a 
wattmeter. 
 
An attempt to calculate the total electromagnetic losses was made by a time-
stepping finite element analysis of the electromagnetic field. The method is an 
eddy-current model, which takes the rotation of the rotor into account, and is 
further described by Arkkio [15]. The analysis is based on the assumption of a 
two-dimensional field. The end region fields are taken into account by the end 
winding impedances in the circuit equations of the windings. The iron core is 
modelled as a non-conducting, nonlinear material having a single-valued 
magnetization curve. This means that the iron losses are neglected in the solu-
tion of the magnetic field. The losses in the stator and rotor windings are directly 
obtained from the solution, and the core losses are indirectly calculated from the 
field analysis. This is done by computing the Fourier-components for the 
amplitude of the flux density as a function of the position in the core. The core 
losses in each volume element are obtained by superposition, using Eq. (6) for 
each Fourier-component. The limitations of the method are mainly that it does 
not properly account for skewed rotors and it neglects interbar currents. The end 
losses and the effects of mechanical working of the rotor surface are also 
neglected. However, the method is believed to predict the core losses in the stator 
yoke and teeth with reasonable accuracy, even for skewed rotors. 
 
In order to separate the loss components in the test motors, the resistive losses of 
the stator windings and the friction and windage losses were first measured. The 
resistive losses of the rotor winding (due to the fundamental current) were calcu-
lated using the flow chart in Fig. 13, and the stator core losses were taken from 
the finite element analysis. Most of the remaining losses are additional losses 
and no-load stray losses in the rotor Pstr, and they are calculated by subtracting 
all the other loss components from the measured total losses. Since the estimated 
accuracy of the total loss measurement is 8 %, Pstr is a rather uncertain approx-
imation. However, for the 15 kW motor, the value is probably useful, because Pstr 
was then almost 30 % of the total losses, and comparisons with the results of the 
thermal calculations also indicate that the calculated value is close to the real 
one. 
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The losses for rated load and no load at 50 Hz are shown in Figs 15–18. Other 
load cases are presented in Tables 1 and 2.  
 
PCus stator winding losses    Pf friction and windage losses 
Pt  stator teeth losses   Py stator yoke losses 
PCur rotor winding losses due to the  Pstr no-load stray losses and addi- 
 fundamental rotor current    tional losses in the rotor 
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Figure 15. Losses of the 15 kW motor   Figure 16. Losses of the 15 kW 
at rated load.     motor at no load. 
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Figure 17. Losses of the 4 kW motor   Figure 18. Losses of the 4 kW 
at rated load.     motor at no load. 
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Table 1. Losses of the 4 kW motor. Frequency, line voltage and torque were mea-
sured. The total losses Ptot, the friction and windage losses Pf, and the stator 
winding losses PCus were also measured. The stator yoke losses Py, the stator teeth 
losses Pt, and the rotor winding losses due to the fundamental rotor current PCur 
were calculated. The combined no-load stray losses and additional losses in the 
rotor Pstr were calculated as Ptot–Pf–PCus–Py–Pt–PCur. 
 

f 
[Hz] 

U 
[V] 

T 
[Nm] 

Ptot 
[W] 

Pf 
[W] 

PCus 
[W] 

Py 
[W] 

Pt 
[W] 

PCur 
[W] 

Pstr 
[W] 

11.1 85 0.0 113 4 90 7 3 0 9 
10.6 86 17.7 318 4 208 9 5 98 -6 
30.3 231 0.0 169 14 91 31 16 0 17 
29.6 227 17.6 351 14 204 28 16 80 9 
29.5 226 26.7 722 14 413 25 20 243 7 
50.4 287 0.0 138 31 32 31 16 0 28 
49.0 373 0.0 239 31 89 54 29 0 36 
50.0 434 0.0 398 31 203 75 40 0 49 
49.8 376 17.9 445 31 209 53 39 84 29 
48.8 371 26.7 768 31 392 52 43 218 32 
69.5 523 0.0 338 48 85 84 44 0 77 
69.2 520 17.6 528 48 207 83 63 81 46 
69.9 525 26.6 861 48 387 84 80 213 49 
88.4 597 0.0 367 92 55 92 49 0 79 
89.2 591 17.6 641 92 207 94 97 106 45 

 
The measurements were made at thermal equilibrium at the end of each heat 
run. There is one negative value of Pstr, which probably is explained by under-
estimation of Ptot or possibly overestimation of PCur. Due to limitations of the 
control system, the frequency could not be regulated to exactly the desired 
values. The voltage was therefore adjusted in order to maintain the U/f ratio at 
the rated condition. At 90 Hz, however, the voltage was reduced for safety 
reasons. The friction and windage losses Pf were measured at no load for 4 
different speeds and are not corrected for speed or temperature differences. 
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Table 2. Losses of the 15 kW motor. Frequency, line voltage and torque were mea-
sured. The total losses Ptot, the friction and windage losses Pf, and the stator 
winding losses PCus were also measured. The stator yoke losses Py, the stator teeth 
losses Pt, and the rotor winding losses due to the fundamental rotor current PCur 
were calculated. The combined no-load stray losses and additional losses in the 
rotor Pstr were calculated as Ptot–Pf–PCus–Py–Pt–PCur. Some of the heat runs 
were repeated after the first round of tests. The repeated heat runs are shown be-
low the double line . 
 

f 
[Hz] 

U 
[V] 

T 
[Nm] 

Ptot 
[W] 

Pf 
[W] 

PCus 
[W] 

Py 
[W] 

Pt 
[W] 

PCur 
[W] 

Pstr 
[W] 

10.1 75 0 260 4 161 21 21 0 53 
9.6 71 97 784 4 419 18 18 277 48 
30.1 228 0 550 15 167 75 92 0 201 
30.1 229 99 1099 15 405 72 96 235 276 
28.9 216 149 2245 15 871 63 85 738 473 
49.3 375 0 900 50 169 141 201 0 339 
50.0 460 0 1480 50 418 221 306 1 484 
50.8 388 99 1633 50 417 146 227 247 546 
51.8 394 148 2792 50 797 150 247 671 877 
69.7 528 0 1310 100 164 223 353 0 470 
69.8 537 99 2154 100 419 233 399 250 753 
90.1 523 0 1130 200 80 185 313 0 352 
88.7 581 94 2557 200 416 244 486 321 890 
29.7 226 147 2039 15 807 68 92 671 386 
49.5 375 0 870 50 172 141 201 0 306 
50.8 385 98 1581 50 411 144 224 242 510 
47.9 364 148 2631 50 810 133 213 672 753 

 
From the repeated heat runs below the double line in Table 2 it can be seen that 
Pstr has decreased by 10–20 % since the first heat run. This can be explained by 
oxidation in the interface between the rotor bars and the rotor core, which de-
creases the losses due to interbar currents. 
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3.4 Treatment of core losses and additional losses 
 
The loss model must be able to calculate and to separate the core losses and the 
additional losses into stator yoke losses, stator teeth losses and rotor losses. Ac-
cording to the FEM-calculations, the stator yoke losses do not change much with 
the load. This may be explained by the increasing leakage flux, which counter-
balances the decrease in main flux. It is thus suggested that 
 
 

    
Py = Us

2 c1 + c2

f

 
   

          (19) 

 
where c1 and c2 depend on the individual weight between eddy current losses and 
hysteresis losses. If this weight is known, c1 and c2 can be calculated from the 
loss data of the electrical steel manufacturer. The loss data should be multiplied 
by an empirical factor for mechanical working. According to the manufacturer of 
the test machines, a suitable correction factor is 1.3.  
 
For the stator teeth losses, the load-dependence is not negligible. Figures 19 and 
20 show the stator teeth losses of the test motors, calculated by the finite element 
method, as a function of the rotor current. The three calculated load cases corre-
spond to no load, 2/3 rated torque, and rated torque. The line voltage is different 
for each case, in order to get the same value of Um. 
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Figure 19. The calculated stator teeth  Figure 20. The calculated stator  
losses of the 15 kW motor at 50 Hz and  teeth losses of the 4 kW motor at  
with Um=206 V.     50 Hz and with Um=207 V. 
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IEC [11] recommends that the total additional losses are assumed to be propor-
tional to the square of the stator current. If instead the additional losses are as-
sumed to be proportional to the square of the rotor current, there is no need to 
correct for the stator no-load current. It is suggested that the frequency depen-
dence, the voltage dependence and the load dependence can be separated into 
factors so that the stator teeth losses are 
 
 

    
Pt = U m

2 1+ c3I r
2( ) c4 + c5

f

 
   

         (20) 

 
where c3 depends on the additional losses in the stator teeth and can be approxi-
mated from Figs 19 and 20. c4 and c5 depend on the individual weight between 
eddy current losses and hysteresis losses. The values of c3, c4 and c5 depend very 
much on the slot geometry, and the best way of calculating them is by comparing 
results from the finite element analysis for different loads and frequencies. 
 
As mentioned, a finite element method can be used to calculate the losses in the 
rotor, but the present method can only be assumed to give reliable results for 
non-skewed rotors. This is a problem, since most smaller induction motors have 
skewed rotors. According to Oberretl [17], some factors that can make the rotor 
losses high are skewing, higher number of rotor slots than stator slots, and open 
stator slots. IEC [11] states a value of the total additional losses at rated load of 
0.5 % of the input power. However, for small machines the additional losses are 
often larger. Alger et al. [12] investigated the additional losses of 24 induction 
motors with closed rotor slots and varying degree of skew, and found that the to-
tal additional losses usually were 1–2 % of the rated output power. It is 
suggested that the additional rotor losses at rated load are assumed to be 1 % of 
the rated output power, if the rotor is skewed with closed slots. The combined no-
load stray losses and additional losses in the rotor are assumed to follow a 
relation of the same type as Eq. (20).  
 
Figures 21 and 22 show the measured no-load stray losses of the test rotors. 
Figure 23 shows the combined no-load stray losses and additional losses of the 15 
kW rotor. Examining the no-load stray losses of the 15 kW machine at different 
frequencies indicated a linear frequency dependence, so that c4 in fact can be 
neglected. However, this can simply be a coincidence, since the 15 kW machine, 
with its high losses, is not really representative for this class of machines. It is 
difficult to draw any conclusions about the frequency dependence of the no-load 
stray losses of the 4 kW machine. The curve fit in Fig. 23 shows that the 
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additional rotor losses are proportional to the square of Ir. If, rather arbitrarily, 
the no-load stray losses are assumed to be equal to the additional losses at rated 
load, a value of c3 can be calculated. 
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Figure 21. The no-load stray losses in Figure 22. The no-load stray losses  
the rotor as a function of the stator fre-  in the rotor as a function of the sta-  
quency (15 kW motor).    tor frequency (4 kW motor). 
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Figure 23. The combined no-load stray losses  
and additional losses in the rotor at 50 Hz as a  
function of the rotor current (15 kW motor). 
 
The data points in Fig. 23 are not corrected for differences in Um. By assuming a 
quadratic dependence on Um, Pstr can be corrected to the no-load case (Um=205 
V) by multiplication by 1.03 at Ir=18 A and by 1.07 at Ir=28 A. 
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4 Thermal networks 
 
4.1 Heat transfer basics 
 
The thermal resistances that branch the nodes in a thermal network can be di-
vided into some categories, which are well described in the basic heat transfer 
literature [26]. 
 
 
Heat conduction 
 
The general equation for heat conduction is  
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 + Q    (21) 

 
where ρ is the density, λ the thermal conductivity, T the temperature and Q the 
dissipated power density. In many cases only one-dimensional heat flux needs to 
be considered. The heat flux is then 
 
 

  
q = −λ ∂T

∂x
          (22) 

 
and the one-dimensional thermal resistance between two points x1 and x2 is 
 
 

    
R th =

x 2 − x 1
λA

         (23) 
 
where A is the cross-sectional area. The one-dimensional thermal resistance of a 
solid body can be assumed to be constant because the thermal conductivity of 
most solid bodies varies only little with temperature. The same can not be 
assumed for gases. The temperature dependence of the thermal conductivity of 
gases, including air, is appreciable. In Appendix B, a table is given with values of 
thermal conductivities for relevant materials in the test machines. 
 
Thermal contact resistances between two adjacent surfaces are due to a thin iso-
lating layer that can be air or oxide. In some cases, the contact pressure can be 
used to calculate the thermal contact resistance. In other cases, measurements 
are necessary to determine the thermal contact resistance.  Examples of such 
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layers in an electrical machine are between the stator winding and the stator 
core, and between lamination sheets in the core. 
 
 
Convection 
 
Heat exchange due to convection is described by 
 
     q = α (Tw − T∞ )          (24) 
 
where α is the heat transfer coefficient and Tw and T∞ are the temperatures of 
the surface and the ambient cooling medium, respectively. Generally α depends 
on many variables, such as the shape and dimensions of the surface, flow charac-
teristics, temperature and material characteristics of the fluid. Numerical values 
for α are in general determined from empirical relations involving dimensionless 
numbers such as the Reynolds number 
 
 

  
Re =

ux

ν
          (25) 

 
where u is the velocity of the coolant flow and ν is the kinematic viscosity. x is a 
characteristic length, which sometimes is the diameter, in which case the symbol 
Red is used. Reynolds number can be used as a measure of the regime of flow. Of-
ten a well defined value (critical Reynolds number) exists, where a transition 
from laminar to turbulent flow can be observed. For free convection, the Grashof 
number 
 
 

    
Gr =

gβ Tw − T
∞( )x 3

ν2         (26) 
 
is used instead of the Reynolds number, where g is the acceleration of gravity, β 
is the volume coefficient of expansion and x is a characteristic length. Another 
dimensionless number is the Prandtl number 
 
 

    
Pr =

νρc

λf
          (27) 

 
where λf is the thermal conductivity of the fluid. Pr is coolant-characteristic. By 
including Pr in an empirical formula for the heat transfer, the formula can be 



  41 

made valid for many kinds of fluids. The Nusselt number is a dimensionless 
number which is directly related to the heat transfer coefficient by 
 
 

    
Nu =

αx

λf
          (28) 

 
where x is a characteristic length. When this length is a diameter, the symbol 
Nud is used. The Nusselt number can in many flow cases be expressed as a func-
tion of the Reynolds number and the Prandtl number. The Nusselt number (and 
thus α) is usually calculated by empirical formulas. Accurate formulas exist only 
for special cases with well defined geometries and flows. The thermal resistance 
due to convection is calculated from α by 
 
 

    
R th =

1

αA
          (29) 

 
 
Radiation 
 
Net radiation that leaves a surface depends on area, material characteristics, 
temperature, and surroundings. The emissivity and the absorbtivity of a compact 
body are usually put equal and there is no transmission. Thus the heat exchange 
depends on radiation angles, emissivity and temperatures of the interacting sur-
faces. Sometimes the simplification can be made that the surroundings act as a 
blackbody, i.e. the absorbtivity is 1. The net radiation from a body to the sur-
roundings can then be calculated by  
 
 

    
q = σε Tw

4
− T∞

4( )         (30) 
 
where Tw and T∞ are the absolute temperatures of the body and the surround-
ings, respectively, σ is Stefan-Boltzmann's constant and ε  is the emissivity of the 
body. In such a case, the thermal resistance to the surroundings is 
 
 

    

R th =
Tw − T

∞

σεA Tw
4
− T
∞
4( )        (31) 
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4.2 Thermal network theory  
 
In a thermal network model, the object is divided into basic thermal elements, 
that are represented by a special node configuration (usually one node and some 
thermal resistances). The elements are linked together, forming a network of 
nodes and thermal resistances. The thermal network is similar to an electrical 
network consisting of current sources and resistances. For small induction mo-
tors, the ambient air temperature is usually taken as a thermal reference. The 
machine elements are represented by the temperature rise (i.e. the temperature 
difference between the element and the ambient air temperature). Let us assume 
that there are n nodes, each of them being linked to the others through thermal 
resistances Ri,j, where i and j are the indices of the linked nodes. Let Ri,i  be the 
thermal resistance between node i and the ambient. Then the steady-state nodal 
temperature rises are related by 
 
 

    

Pi =
θi

R i ,i
+

θ i − θ j

R i , jj=1

n

∑ i = 1,.. .,n      (32) 

 
where θ1 to θn are the temperature rises of each node and P1 to Pn are the losses 
of each node. A conductance matrix is usually defined  
 

 

      

G =

1
R 1,ii=1

n

∑ −1
R 1,2

−1
R 1,3

⋅ ⋅ ⋅ −1
R 1,n

−1

R 2,1

1

R 2,ii=1

n

∑ −1

R 2,3

⋅ ⋅ ⋅ −1

R 2,n

−1

R 3,1

−1

R 3,2

1

R 3,ii=1

n

∑ ⋅ ⋅ ⋅ −1

R 3,n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1

R n ,1

−1

R n ,2

−1

R n ,3

⋅ ⋅ ⋅ 1

R n ,ii=1

n

∑

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

    (33) 

 
which makes it possible to express the system of equations in matrix form. 
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The column vectors P and Θ are defined 
 

 

      

P =

P1
P2
P3
⋅ ⋅ ⋅
Pn

 

 

 
 
 
 

 

 

 
 
 
 
          (34) 

 

    

Θ =

θ1
θ2
θ3
⋅ ⋅ ⋅
θn

 

 

 
 
 
 

 

 

 
 
 
 
          (35) 

 
With these definitions, Eq. (32) becomes 
 
   P = GΘ           (36) 
 
   Θ = G−1P           (37) 
 
The stationary solution is obtained directly from Eq. (37). However, some of the 
parameters in G and especially in P are temperature-dependent, so an iterative 
process should be used where the temperature-dependent parameters are up-
dated until the error is sufficiently small. 
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4.3 Node configurations 
 
A node configuration should be understood as the way a particular element is 
modelled by nodes and by thermal resistances to the surroundings. It is impor-
tant that the node configuration is such that the average temperature of the ele-
ment is obtained in one node. From this temperature, the maximum temperature 
can generally be calculated. The simplest node configuration is that for one-
dimensional heat flow with no internal sources (Fig. 24). R0 is the total thermal 
resistance of the element in the direction of the heat flow. 
 

 
Tav

R 0
2

R 0
2

T1 T2 
 
Figure 24. Node configuration for one-dimensional heat flow without inner 
sources. 
 
Now suppose there is a uniform heat generation in the element. It is quite easily 
shown [5], that the two-node configuration in Fig. 25 then can be used to obtain 
the average temperature in the element. The internal losses Pd of the element 
are then injected to the node that obtains the average temperature Tav. 
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Figure 25. Node configuration for one-dimensional flow with inner sources. 
 
If the maximum temperature of the element is not T1 or T2, it is given by 
 
 

    
Tmax = 1.5Tav − 0. 25 (T1 + T2 ) +

(T1 − T2 )2

12 (2Tav − T1 − T2 )
   (38) 
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This node configuration is suitable also when heat is uniformly added or sub-
tracted along the element, e.g. due to convection. However, the element must 
then be sufficiently long, so that the principal heat flow is still one-dimensional. 
The disadvantage of this node configuration is that two nodes are needed instead 
of one.  
 
For two-dimensional heat flow, the exact solution [27] is complex and can not 
easily be represented by a thermal network. However, as an approximate model, 
the node configurations of Figs 26 and 27 can be used. 
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Figure 26. Node configuration for two- Figure 27. Node configuration for  
dimensional flow with inner sources.    two-dimensional flow with no inner  
      sources. 
 
In Figs 26 and 27, Rx0 and Ry0 are the thermal resistances for one-dimensional 
flow in the x- and y-directions, respectively. The node configuration in Fig. 26 is 
simply obtained by connecting the node configurations of Fig. 25 in the x- and y-
directions to the node they have in common. The three-dimensional case can be 
treated in the same way by connecting new branches accounting for the heat flow 
in the z-direction. This would then become a four-node configuration for the case 
with inner sources and a one-node configuration without inner sources. 
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4.4 A thermal model for TEFC induction motors 
 
The suggested thermal network is primarily intended for design purposes. It is 
larger than most of the previously suggested models [1,5], which gives more de-
tailed information of temperatures and heat flows. The developed model is shown 
in Fig. 28. It consists of 107 nodes and 170 thermal resistances. The network is 
based on experiences from measurements and simulations on the 15 kW enclosed 
induction motor, but it is suitable for any TEFC induction motor with cage rotor. 
With minor changes, the model can be used for wound rotors as well. 
 
All peripheral temperature variations are neglected (except the temperature dif-
ference between the stator coil sides and the stator teeth). The symmetry makes 
it possible to divide the machine into elements that are concentric around the 
shaft. These elements are each divided into axial sections, which makes it possi-
ble to model the axial temperature variations within the machine. Thus the 
shaft, the rotor, the stator yoke and the frame are modelled as cylindrical shells 
or bodies. Since the stator teeth all are identical, they are treated as a number of 
parallel heat paths, which means that only one element is needed for each axial 
section of the stator teeth. The stator windings are treated similarly, with only 
one element for each axial section. The end shields are represented by one node 
and the bearings are each represented by three nodes. Furthermore, the internal 
air between the rotor and the end shields is represented by nodes. In total there 
are 96 elements (there are 107 nodes because the stator tooth elements are 
modelled by two-node configurations).  
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Figure 28. Thermal model with 96 elements. 
 
4.5 Identification of thermal resistances 
 
Because there are thermal resistances that are difficult to calculate analytically, 
some thermal networks were developed to identify unknown thermal resistances 
using steady-state temperature and loss measurements. Some of the measured 
temperatures serve as boundary conditions, Tj, which are related to the nodal 
temperatures Tk by  
 
 

    

Pk =
Tk − Ti

R 1,ii=1

n

∑ +
Tk − T j

R 1,j
k = 1...n

j=n +1

m

∑     (39) 

 
The identification process relies on measurements of some key temperatures 
among Tk. The identification is made by adapting the unknown thermal resis-
tances so that the measured and calculated values of Tk are equal. The method 
works best when only one variable is unknown. The identification models that 
were used are shown in Figs 31, 61 and 67, and are further described in the ap-
propriate sections. Black dots represent boundary conditions and grey rectangles 
represent thermal resistances to be identified. Unfilled rectangles represent 
known thermal resistances. 
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5 Models of the machine parts 
 
5.1 Rotor 
 
When modelling aluminium cage rotors, the following assumptions are made: 
Axial heat flux in the rotor core is neglected. Thermal contact resistance between 
the rotor bars and the core is also neglected. This assumption is supported by 
measurements in [28], where it can be seen that the temperature drop between 
the bars and the core is very small. The rotor bar losses are assumed to be evenly 
distributed along the rotor. However, the end ring losses must be separately cal-
culated. The rotor yoke is assumed to be lossless. 
 
 
5.1.1 Internal modelling 
 
The low thermal resistance between the bars and the core makes it possible to 
represent them both with one element. The rotor surface losses are thus added to 
the bar losses and the thermal capacity of the core to that of the bars. Such an 
element is in thermal contact with the stator teeth (through the air gap), the 
shaft and with other rotor elements in the axial direction. The thermal 
resistance between two rotor elements is: 
 
 

      
R th =

l

Q r Aλ
         (40) 

 
where l is the distance between adjacent rotor elements, Qr is the number of 
bars, λ is the heat conductivity of the bar material and A is the cross-sectional 
area of a bar. The thermal resistance between a rotor element and a shaft ele-
ment is partly due to the thermal resistance through the rotor core and partly 
due to a thermal contact resistance at the junction. The thermal resistance 
through the rotor core is given by: 
 
 

      
R th =

ln r2 − ln r1
2πλl

         (41) 
 
where r2 is the radius to the bottom of the rotor slots, r1 is the shaft radius and λ 
is the thermal conductivity of the core material. It is suggested that the thermal 
contact resistance is assumed to be of the same order of magnitude as that given 
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by Eq. (41), since comparisons between measured shaft and rotor temperatures 
seemed to imply this for the 15 kW-motor. 
 
 
5.1.2 Thermal resistance of the air gap 
 
The heat flow in the air gap includes conduction, convection and radiation 
(radiation being a small part though). The heat flow in the air gap between con-
centric cylinders has been investigated by Becker and Kaye [29], Gazley [30], and 
others [31,32]. Only Gazley used real electrical machine parts with a normal air 
gap, the others used large air gaps and smooth surfaces both of the rotor and the 
stator. Most smaller TEFC motors have no axial air flow in the air gap. Without 
axial air flow, the flow is laminar at low speeds, but at a relatively high speed, a 
transition to turbulent flow begins. In the ideal laminar mode, there is no radial 
velocity component of the air, so heat can only be transported by conduction and 
radiation from the rotor to the stator. In the turbulent mode, vortices appear that 
make convection become an important factor. The mode is characterized by a 
Taylor number or modified Taylor number. The modified Taylor number used by 
Becker and Kaye is 
 
 

    

Ta( )m =
ω 2rδδ

3

ν2Fg

         (42) 

 
where ω is the angular speed, rδ is the average air gap radius and Fg can be put 
to 1 for all practical cases. Becker and Kaye [29] indicate the critical modified 
Taylor number to 1740. Their data are shown in Fig. 29. At Taylor numbers 
higher than 1740, they give the empirical formula 
 
     Nu = 0.409 (Ta )m

0.241
− 137 (Ta )m

−0.75      (43) 
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Figure 29. Becker's and Kaye's data for smooth rotor and stator surfaces 
 
With no axial air flow, α is usually defined as the heat transfer coefficient be-
tween the rotor and the stator rather than between the rotor and the fluid. Since 
the air gap is the characteristic length, this means that the relation between α 
and Nu is 
 
 

    
α =

Nu λ f
2δ

          (44) 
 
α represents in this case both conduction and convection in the air gap. At lami-
nar air flow, i.e. (Ta)m<1740, Nu has the value 2. This is also the measured 
value of Nu in [29,31,32]. Gazley's [30] result, however, is higher. His data are 
never-theless interesting since they are the only ones measured with a realistic 
air gap and with slots in the stator, as would be expected in a real machine. His 
data are shown in Fig. 30. If the data for the slotted surfaces are compared with 
those for the smooth surfaces, it can be seen that the heat conduction decreases 
because of the slots. However, a convective heat transfer component is also added 
which increases with the Taylor number. Since Gazley's data have not yet been 
confirmed by any similar investigation, we have chosen to neglect both these 
effects of the slotting, since they work against each other. For smooth surfaces, 
Gazley measured Nu=2.5 for laminar flow. In this work however, Nu=2 is used 
as [29,31,32] suggest.  
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Figure 30. Gazley's data for slotted rotors and stators. The data have been related 
to the Taylor number instead of the Reynolds number. 
 
Since both λ and ν are temperature-dependent, it is suggested that they are 
evaluated for the average air gap temperature. Furthermore, the thermal expan-
sion of the rotor and the stator makes δ temperature-dependent. The tempera-
ture dependence can be accounted for by 
 
     δ = δ0 − κFerδ∆T          (45) 
 
where δ0 is the air gap without thermal expansion. When α  has been calculated, 
the thermal resistance due to conductive and convective heat transfer can be de-
termined. The thermal resistance between a rotor element and a stator teeth el-
ement is 
 
  

      
R th 1 =

1

2πrδlα
         (46) 

 
where l is the axial length of the elements. Eq. (46) does not include radiation. 
 
The emissivity of the rotor and stator surfaces was measured approximately by 
heating them to 70 °C and comparing their temperatures with the readings of an 
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infra-red measuring device. The result was that the emissivity of the lacquered 
stator surface was εs≈0.95 while the emissivity of the lathed rotor surface was 
εr≈0.13. For such a low emissivity, the heat radiation is very small for normal in-
duction motors. The radiation heat flux is given by 
 
 

    

q =
σ (Tr

4 − Ts
4 )

1
εr

+
1
εs

− 1  
        (47) 

 
In Eq. (47), T is the absolute temperature. Indices r and s stand for the rotor and 
the stator, respectively. 
 
 
5.1.3 Heat transfer from the end rings 
 
The rotor fins provide a heat path from the rotor end rings to the internal air. 
The amount of heat transferred from the rotor to the internal air can be de-
scribed by a heat transfer coefficient, that is a function of the rotor peripheral 
speed and the geometry of the rotor ends. Kotrba [33] suggests that 
 
     α = ku r

0.65          (48) 
 
where k=16.5 W(s/m)0.65/m2K and ur is the peripheral speed of the rotor. The 
area associated with the heat transfer coefficient is calculated by 
 
     A = 2bhn + πrδ

2          (49) 
 
where b and h are the length and height of the rotor fins, respectively, and n is 
the number of fins. This choice of area definition gives larger weight to the latter 
term than to the actual fin area, which can be criticized since no doubt the heat 
transfer coefficient of the fins is greater than that of the rings and core ends. In 
order to check the validity of Eq. (48) for the test motors, an identification model 
was used to find the values of the heat transfer coefficient. 
 
Identification model for the heat transfer from the rotor end rings 
 
The identification model is shown in Fig. 31. There are three values of thermal 
resistances that can not be easily calculated. These are Ra, Rb and Rc, which are 
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represented as greyshaded rectangles. Ra is the thermal resistance between a 
stator end-winding node and internal air. Rb is the thermal resistance between a  
stator coil side node and a stator teeth node. Rc is the thermal resistance 
between a rotor end ring and internal air. The other thermal resistances are 
represented by unfilled rectangles and can be calculated individually. The black 
dots represent the boundary conditions. In order to identify Rc, the rotor surface 
temperature must be measured, as well as the boundary temperatures. The 
calculated rotor temperature is insensitive for variations in Ra and Rb, so these 
values can be approximative. There must be a significant temperature difference 
between the rotor and the stator, so it is best to perform the experiment at rated 
load. 
 
It is assumed that the total rotor losses, including additional losses, can be either 
calculated, or else evaluated from measurements. The rotor losses are assumed 
to be evenly distributed along the rotor, except for the end ring losses, which are 
calculated according to Eq. (5). Rc is identified as the value that makes measured 
and calculated rotor temperatures equal. The identification primarily relies on 
the accuracy of the rotor loss calculation and the accuracy of the value of the 
thermal resistance of the air gap.  
 
If the end ring losses are small, the axial temperature variation along the rotor 
tends to be large; in such a case, the measured and calculated rotor temperature 
variations can also be compared as a check on the plausibility of the identified 
value. This is possible by measuring at least 5 equally spaced rotor 
temperatures, two of which should be the end ring temperatures.  
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 Figure 31. Model for identification of the thermal resistances Ra , Rb  and Rc . 
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The result of the identification is shown in Fig. 32 together with the relation sug-
gested by Kotrba. Basically, the validity of Eq. (48) seems to be confirmed by the 
identification results.  
 
The identification result for the 15 kW motor is probably more reliable than that 
of the 4 kW motor, because the temperature difference between the rotor and the 
internal air was larger, the percentage of rotor losses was larger and the fins 
were larger, which made the heat flow from the fins appreciable. A 1 °C tempera-
ture measurement error would cause a 5 % error in the identified value and a 5 
% error in the rotor losses would cause a 12 % error in the identified value at 
rated load. A possible explanation of why the identification results for the 4 kW 
motor are lower than those for the 15 kW motor can also be that the fin area of 
the 4 kW motor is a smaller percentage of the total area given by Eq. (49). 
 
The axial temperature variation was substantial for the 15 kW motor but very 
small for the 4 kW motor. In Figs. 33–38, the calculated and measured rotor tem-
peratures of the 15 kW motor are shown for some different speeds. The fact that 
the calculated temperatures do not exactly match the measured data points can 
be explained if the rotor losses are not evenly distributed, which would be the 
case if the losses due to interbar currents are large. 
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Figure 32. Identification of the heat transfer coefficient of the rotor end rings. 
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Figure 33. Rotor temperatures at  Figure 34. Rotor temperatures at 
standstill, locked rotor test.   167 rpm, 67 % of rated torque. 

130

135

140

145

150

155

T
e

m
pe

ra
tu

re
 [

°C
] 160

165

170

-5 0 5 10
Distance from core end [cm]

15 20 25

measured

simulated

 

130

135

140

145

150

155

T
e

m
pe

ra
tu

re
 [

°C
] 160

165

170

-5 0 5 10
Distance from core end [cm]

15 20 25

measured

simulated

 
Figure 35. Rotor temperatures at  Figure 36. Rotor temperatures at 
530 rpm, rated torque.    998 rpm, rated torque. 
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Figure 37. Rotor temperatures at  Figure 38. Rotor temperatures at 
1376 rpm, 67 % of rated torque.  1746 rpm, 67 % of rated torque. 
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5.2 Shaft  
 
The shaft is treated as a cylinder with an isothermal cross-section. The shaft di-
ameter varies along its length: it is smaller on the outside of the machine. The 
thermal resistance between two shaft elements is: 
 
 

      
R th =

l

πr2λ
         (50) 

 
where r is the shaft radius and λ the thermal conductivity of the shaft material. 
Heat enters the shaft from the rotor and goes to the bearings, to the internal air 
and to the ambient air. The shaft can be modelled by dividing it into a number of 
elements that are connected to the rotor: 2 elements that are connected to the in-
ternal air (one at each side of the rotor), 2 elements that are connected to the 
bearings and one element that is connected to the ambient air.  
 
The heat transfer between a rotating cylinder and air has been investigated by 
Etemad [34], who measured the Nusselt numbers for a range of Reynolds num-
bers from 0 to 65400. The suggested empirical correlation is 
 
     Nu d = 0.076Re d

0.7        (51) 
 
where Red is calculated using the diameter and the peripheral velocity of the 
shaft. It is suggested that Eq. (51) is used to calculate the thermal resistances 
from the shaft to the internal and external air. Of course, the external part of the 
shaft is also in thermal contact with a mechanical coupling. The coupling and the 
load have a certain influence on the drive side bearing temperature and should 
be treated from case to case. 
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5.3 Stator winding 
 
Since the windings are the machine parts that are most likely to be damaged by 
excessive heating, their modelling is important. All coils in the machine are as-
sumed to have the same temperature distribution, so that they can be treated as 
being in parallel with each other. In the axial direction, the windings are 
modelled by a number of nodes connected in series, each one representing the 
average temperature of a winding element. In the transverse direction, the coil 
sides are connected to the stator core and the end windings are connected to the 
internal air. 
 
 
5.3.1 Coil sides 
 
The thermal resistance between two adjacent winding nodes is obtained by 
 
 

      
R th =

l

QsA Cuλ
         (52) 

 
where Qs is the number of stator slots, l the length between nodes and ACu the 
total copper area in one slot. Axial conduction in the insulating material is neg-
lected because of its low value of thermal conductivity. 
 
The transverse heat flow is rather difficult to model. Not only must the average 
winding temperature be obtained, but also the maximum temperature, since it is 
the maximum temperature that effects the rate of ageing. In the embedded wind-
ings, the generated heat must pass through impregnation material, slot insula-
tion and air pockets before it reaches the stator core. The heat exchange between 
the slots and the rotor is probably small. Since the exact geometrical configura-
tion of air, copper and insulation material is unknown, some simplifications are 
introduced: The slot material, consisting of copper wires and impregnation, is 
considered as a homogeneous body with uniform heat generation. Assuming 
there are no air pockets inside the slot insulation, the thermal conductivity can 
be calculated by the finite element method [10]. The thermal conductivity is a 
function of the percentage of metal in the insulated slot area, see Fig. 39. 
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Figure 39. Thermal conductivity of the slot material, λs, expressed as its ratio to 
the thermal conductivity of the impregnation material, λimp. The value depends 
on the percentage of metal area in the slot and the orientation of the wires in the 
slot. 
 
The slot insulation and the air pockets are modelled by a layer that surrounds 
the slot material. The thickness d of this layer should be equal to the sum of the 
slot insulation thickness di and the equivalent air film thickness da. In fact, the 
thermal resistance of the slot insulation is much smaller than that of the equiva-
lent air film. The assumption that all air pockets are located outside the slot in-
sulation can be disputed. The penetration of the impregnation resin depends on 
manufacturing techniques. A visual inspection of the end windings of the 4 kW 
machine showed a solid penetration at the drive side, but at the fan side the 
penetration was not complete, probably because the fan side was turned upwards 
during the hardening process. Better technique, like vacuum impregnation, can 
reduce air pockets both in the coils and between the slot insulation and the core. 
Some examples of how air pockets can be formed between the slot insulation and 
the stator core are shown in Fig. 40. 
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Figure 40. Air pockets between the stator core and the slot insulation. 
 
One possibility to obtain values for the average and maximum slot temperatures 
is to use an equivalent rectangular slot shape. Soderberg [27] derived ex-
pressions for the average and maximum temperatures of a rectangular element 
assuming a constant boundary temperature and a thermal surface resistance. 
There is an exact solution of this problem, but it has a complex mathematical 
form and can not easily be represented by a thermal resistive network. 
Soderbergs expressions are good approximations and can be represented by 
equivalent thermal resistances. In Fig. 41 the fictive slot shape is shown together 
with a suggestion of how to transform the original slot shape into the rectangular 
slot shape. 
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Figure 41. Transformation of the original slot shape into a rectangular slot shape. 
Ta, the boundary temperature, is assumed to be uniform and equal to the average 
stator tooth temperature. 
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The one-dimensional thermal resistances of the slot material per unit length are 
 
 

    
R x 0 =

b

hλs
          (53) 

 
 

    
R y 0 =

h

bλs
          (54) 

 
where λs is the thermal conductivity of the slot material. The one-dimensional 
thermal resistances resulting from the slot insulation and the air film per unit 
length are 
 
 

    
R ix =

d i

h λi
+

d a

h λa
         (55) 

 
 

    
R iy =

d i

bλ i
+

da

bλa
         (56) 

 
where λi and λa are the thermal conductivities of the slot insulation and the air 
film, respectively. di, if not given by the manufacturer, can be measured. By 
rearranging Soderbergs original expressions the following is obtained 
 
 

    

Tav = Ta + Qbh
R x R y

R x + R y
(1−

R x 0R y 0

720R x R y
)      (57) 

 
 

    

Tmax = Ta + (Tav − Ta )
(R ix +0. 25R x 0 )(R iy + 0.25R y 0 )

4R x R y
(1−

R x0R y 0

384R x R y
) (58) 

 
where Tav and Tmax are the average and maximum temperatures, and Rx and Ry 
are given by 
 
 

    
R x = 0.5(R ix +

R x 0

6
)         (59) 

 
 

    
R y = 0.5(R iy +

R y 0

6
)         (60) 

 
The above values are all per unit length. Most of the heat flows to the stator 
teeth, only a minor part flows to the stator yoke, since Ry>>Rx in general. Be-
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cause of this, Ta corresponds to the average stator tooth temperature. The equi-
valent thermal resistance between a coil side node and a stator tooth node is  
 
 

      

R th =
R x R y

Qsl(R x + R y )
(1−

R x0R y 0

720R x R y
)       (61) 

 
where Qs is the number of slots and l the distance between two adjacent coil side 
nodes. Eq. (61) can be used to calculate the thermal resistance between the 
stator windings and the stator teeth, but necessitates the knowledge of the 
thickness da of the equivalent air film, which is not directly measurable. Because 
of this, an identification model has been used to provide some values of da. 
 
Identification of the thermal resistance between the coil sides and the 
stator teeth 
 
The best way of heating the stator windings is by a DC current, because then all 
other machine parts are lossless, and the stator winding temperature is easily 
measured by the resistance method. The identification model mentioned earlier 
(Fig. 31) is used. The heat run must be made at standstill, because then the con-
vective and radiative heat flow from the end windings is quite small, and can be 
calculated and deducted using the theory presented in Section 5.3.2. Alterna-
tively, the machine can be filled with isolating and reflective material in such a 
way that no heat can leave the end windings. By doing so, the value Ra in Fig. 31 
can be given a very high value. The value of Rc in Fig. 31 can be approximated.  
 
Applying a guessed value of the unknown thermal resistance Rb, the average 
temperature of the stator windings is calculated. This temperature is compared 
with the measured temperature, obtained by the resistance method, and Rb is 
changed until the calculated and measured temperatures are equal.  
 
It is probable that the thermal resistance between the stator windings and the 
stator teeth is slightly temperature-dependent, because of air pockets and ther-
mal expansion. Temperature dependence is not included in the model, but it can 
be included by using the temperature dependence of λa in Eqs (55) and (56). By 
inserting the identified values into Eq. (61), it was found that the equivalent air 
layer thickness associated with the winding insulation was da=0.17 mm for the 4 
kW machine and da=0.30 mm for the 15 kW machine using λa=0.03 W/m.K. 
Using these values for unknown, but similar machines is somewhat risky, but 
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probably better than no value at all. Figure 42 shows the results for the 4 kW 
machine. Each data point corresponds to a different DC current. For the 15 kW 
machine, only one such test was performed, which resulted in a value of Rth of 
0.38 K/W. Figures 43–44 show the simulated and measured stator winding 
temperature at rated current for the two test machines. The measured end-
winding temperatures are also shown, but they are not used for identification 
purposes since they obviously are lower than the average end-winding 
temperatures. 
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Figure 42. 4 kW motor: Identified  Figure 43. 4 kW motor:  Simulated 
thermal resistances between the  stator winding temperature with  
stator windings and the stator teeth   injected DC  current at standstill. 
 

50

55

60

65

70

75

80

T
em

p
er

at
u

re
 [

°C
]

-15 -5 5 15 25 35

end winding thermocouples

distance from core end [cm]

measured average

simulated

 
Figure 44. 15 kW motor: Simulated stator winding  
temperature with injected DC  current at standstill. 
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5.3.2  End windings 
 
The heat transfer from the end windings is mostly due to convection although 
some radiation also exists. Figures 45 and 46 show how the air circulates due to 
free convection at standstill and due to forced convection at normal speed. 
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Figure 45. Air flow at standstill.  Figure 46. Air flow for a rotating 
       machine. 
 
When the machine is running, the air circulates as shown in Fig. 46. The air is 
accelerated by the rotor fins, passes through the holes in the end winding, and is 
cooled by the end shield on its way back to the rotor fins. If the passages through 
the end windings are very small, the axial air flow is obstructed, which can 
result in poor cooling of the end windings. Unfortunately, there are very few 
references concerning heat transfer from end windings of enclosed electrical 
machines. Luke [35] made some measurements of the heat transfer coefficient of 
a specially built rotor winding. However, his apparatus was not very similar to a 
modern TEFC motor. Koziej [36] gives some formulas for the external and 
internal surfaces of the end winding. According to him, the heat transfer 
coefficient is proportional to the 0.6 power of speed. In order to compare different 
results, the same definition of the end winding area must be used. Luke defines 
it as 
 
 

      
A = πlov

d1 + d2( )
2

        (62) 
 
where lov is the average conductor length of the winding overhangs and d1 and 
d2 are given in Fig. 45. This definition of the area is used hereafter. 
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At standstill, the heat transfer is quite small and consists of radiation and free 
convection. The net radiation heat is approximated as 
 
 

    
P = 0.5Aσε Tw

4
− T∞

4( )        (63) 
 
where Tw and T∞ in this case are the absolute temperatures of the end winding 
and the end shield, respectively. The factor 0.5 accounts for the fact that only the 
outside of the end winding faces the end shield. Assuming there is a layer of 
paint or varnish on the end shield, the value ε=0.9 can be used.  
 
The effect of free convection can be determined by using a formula for free con-
vection between concentric cylinders [37]. Assuming that the inner and outer air 
streams, shown in Fig. 45, follow the same law, the convection heat flow at 
standstill becomes 
 

 

      

P = 0.386πlov (Tw − T
∞

)λa Pr

(0.861+ Pr )0.25

GrL 1

0.25

L 1
0.75(d1

−0.6 + d0
−0.6)1.25 +

GrL 2

0.25

L2
0.75(d2

−0.6 + d0
−0.6)1.25

 

 
  

 

 
  
  (64) 

 
where Tw and T∞ in this case are the temperatures of the end winding and the 
end shield, respectively. Gr is calculated using Tw, T∞ and using L1 or L2 as 
characteristic length. The distances d0, d1, d2, L1 and L2 are given in Fig. 45. 
 
To get some data of the heat transfer coefficient of the end windings, an identifi-
cation model has been used. 
 
 
Identification of the thermal resistance between the stator end wind-
ings and the internal air 
 
Before the identification of the thermal resistance between the stator end wind-
ings and the internal air, the thermal resistance between the coil sides and the 
stator teeth must already be known. The identification model mentioned earlier 
(Fig. 31) is used. The average temperature of the stator windings is measured by 
the resistance method, and Ra is identified as the value that makes calculated 
and measured average stator winding temperatures equal. The results of the 
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identification in the form of a heat transfer coefficient are shown together with 
Luke's data in Figs 47 and 48. 
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Figure 47.  Heat transfer coefficient   Figure 48. Heat transfer coefficient 
between the  end windings and the   between the end windings and the 
internal air.     internal air. 
 
Each data point in Figs 47 and 48 corresponds to a test with a different load and 
speed. Unfortunately, the identification did not produce equal results for equal 
speeds; high loads usually resulted in higher α. There are some sources of error 
in the identification that can explain the scatter; A 1 °C measurement error of 
the frame temperature or of the stator winding temperature can result in a 20 % 
error, and a 1 °C measurement error of the internal air temperature can result in 
a 5 % error for a test with rated current. At partial load the errors would be even 
larger. The temperature dependence of the thermal resistance between the coil 
sides and the stator teeth, and also the influence of heat entering the stator slots 
from the rotor, were neglected, and can cause errors. It is suggested that the fol-
lowing formula is used to calculate the heat transfer coefficient of the end wind-
ings 
 
     α = k 1 + k 2u r

0.6         (65) 
 
where k1=6.5 W/m2K and k2=5.25 W(s/m)0.6/m2K. The effect of radiation is in-
cluded in the expression for α, and need not be described by an additional ther-
mal resistance from the end winding to the end shield. Equation (65) gives a 
rather crude value of α, but it is believed better to use this value than Luke's 
data, which can not be trusted in view of the difference between his experimental 
setup and a real TEFC motor. As a final remark, it is believed that Luke's ap-
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proach of using dummies with a known heat generation is the best way of mea-
suring the heat transfer coefficient of the end windings. Figs 49–52 show the 
measured and calculated stator winding temperatures for some of the identifica-
tion tests. 
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Figure 49. Simulated and measured  Figure 50. Simulated and measured 
stator winding temperatures for the  stator winding temperatures for the 
15 kW-machine at rated load, 50 Hz.  4 kW-machine at rated load, 50 Hz. 
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Figure 51. Stator winding tem-  Figure 52. Stator winding tem- 
peratures for the 15 kW-machine  peratures for the 4 kW-machine 
at 67 % rated load, 90 Hz.   at 67 % rated load, 90 Hz. 
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5.4 Stator core 
 
The stator yoke is modelled with single-node configurations, since the heat flow 
coming from the stator teeth is usually much larger than the internally gener-
ated heat. Peripheral and axial heat flux is neglected. The stator yoke elements 
are hollow cylinders with a thermal resistance in the radial direction given by  
 
 

      
R th =

ln r2 − ln r1
2πλl

         (66) 
 
where r2 is the outer radius and r1 the radius defined at the top of the slots. 
 
The stator teeth are treated as being in parallel with each other. Peripheral tem-
perature variations are neglected. Heat flow in the direction of the shaft is also 
neglected due to the thermal contact resistance between individual lamination 
sheets. Heat enters the teeth from the rotor. Along its way towards the yoke, 
more heat is added from the stator slots and from internal sources. Assuming 
that the heat flux entering from the slots is constant along the y-axis, the situa-
tion is similar to the one-dimensional problem that was discussed in Section 4.3. 
Consequently, a two-node configuration with equivalent thermal resistances is 
used as shown in Fig. 53. 
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Figure 53. Stator tooth node configuration. 
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The average temperature is obtained in the node to the right in Fig. 53. Due to 
variations in the tooth-width, an integration should be performed along the y-
axis to obtain the value of R0. A tooth can usually be divided into four parts, as 
shown in Fig. 54. 
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Figure 54. Tooth geometry. 
 
The expression for R0 is 
 

 

      

R 0 =
1

λQslx (y )
0

y max∫ dy         (67) 

 
where ymax=y1+y2+y3+y4. Eq. (67) can be expressed as 
 

 

      

R 0 = 1

λQsl

y 1

x 1

+ y 3

x 3

+ y 2

x 1 − x 2

ln
x 1y 2

x 1 − x 2

− ln y 2 − x 1y 2

x 1 − x 2

 
   

  +
 
  

− π
4

+ a

a 2 − 1
arctan

a + 1

a 2 − 1

 
  

 (68) 

where 
 
 

    
a =

x 3 + 2y 4
2y 4

         (69) 
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5.5 Frame 
 
 
5.5.1 Thermal resistance in the axial direction 
 
The frame is usually cylindrical with straight fins to increase the cooling surface. 
The elements that model the frame are not identical, because the frame is 
thicker at the ends. Furthermore, the thickness of the frame against the core 
varies, since the core is not completetly circular. Therefore, an average value of 
the thickness should be used for those parts of the frame that are in contact with 
the core. The thermal resistance between two frame elements is 
 
 

      

R th =
l

λ 2πrb + A f( )        (70) 

 
where b is the frame thickness, r is the frame radius and Af the cross-sectional 
area of the cooling fins. 
 
 
5.5.2 Heat transfer to the ambient 
 
A shaft-mounted fan blows air through cooling channels formed by the fins, as 
illustrated in Fig. 55. The cooling channels are approximately rectangular with 
one side open. Since one side is open, the air velocity decreases along the chan-
nels. The ratio between length and hydraulic diameter of the cooling channels is 
such that entrance effects are significant, which causes the heat transfer coeffi-
cient to be larger at the fan end than at the drive end.  
 

 
Figure 55. Cooling air flow of a TEFC-motor. 
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The hydraulic diameter is in this case defined 
 

     
dh =

4bh

2h + b          (71) 
 
where b is the space between fins and h is the average height of the fins. It is as-
sumed that the temperature difference between the fins and the wall is small. 
The flow mode in the cooling channels is turbulent, except at low speeds. This 
was verified by measuring the Reynolds number in the channels, which for the 
rated speed is about 4 times larger than 2300, which is considered as the critical 
value for closed channels. This makes it possible to use a formula by Nusselt 
[37], which takes the entrance effects into consideration and is commonly used 
for turbulent flow in tubes 
 
 

      
Nu d = 0.036Re d

0.8Pr1/3 dh
l

 
   

 
0.055

      (72) 

 
Equation (72) gives a value of the average Nusselt number along the frame. Un-
fortunately, it is difficult to calculate, or even measure, an accurate value of Red, 
which limits the value of using Eq. (72). It is more reliable to measure an av-
erage value of the heat transfer coefficient using the average temperature rise of 
the frame and the total losses. Equation (72) tells us that α is proportional to 
ω0.8, since the air velocity in the cooling channels is proportional to ω  (see Fig. 
56).  
 
The air velocity was measured in the centre of each cooling channel by a hot-wire 
anemometer. The sensor was small but not negligibly small compared to the cool-
ing channels. This may have slightly affected the results. Figure 56 shows the 
air velocity in one of the cooling channels 1 cm from the fan outlet. The air 
velocity in this particular cooling channel was 50 % larger than the average 
velocity of all channels. The difference in air velocity between different cooling 
channels is explained by machine details that block the entrances of some 
cooling channels [10]. Figure 57 shows the measured average air velocity along 
the sides of the test machines at rated speed. x is here the distance from the 
beginning of the cooling channels near the fan.  
 



  73 

0

5

10

15

20

25
ai

r 
ve

lo
ci

ty
 [m

/s
]

0 40 80 120 160

 ω [rad/s]

15 kW-motor

0

2

4

6

8

0

ai
r 

ve
lo

ci
ty

 [m
/s

]

2 4 6 8 10 12 14

dimensionless axial distance,  x/d
h

4 kW-motor

15 kW-motor

 
Figure 56. Measured air velocity in a  Figure 57. Air velocity variations 
cooling channel near the fan, plotted   along the frame  
against the angular velocity. 
 
Figure 58 shows measured values of α for a range of speeds and loads of the two 
test machines, and compares them with curves of the type 

    
α = c1 + c2ω

0.8. α was 
here computed using the total losses, the average temperature rise of the frame 
and the total external surface of the frame, including the fins and the end 
shields. 
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Figure 58. Measured average heat transfer coefficient of the frame. 
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The magnitude of α is almost the same for the two machines, but this may be a 
coincidence. The three data points for each speed in Fig. 58 are, with some excep-
tions, for no load, 2/3 of rated torque and rated torque. It can be seen that the 
temperature dependence of α can be neglected, because the three different load 
cases give approximately the same value of α. The fact that α is not zero at 
standstill is explained by the effects of natural convection and radiation. 
 
The question still remains how α varies along the frame. As far as the author 
knows, this has not yet been thoroughly examined. In order to do this, an espe-
cially prepared dummy frame would have to be constructed, which unfortunately 
is beyond the scope of this work. However, the local heat transfer of closed chan-
nels, such as tubes, has been well investigated by Mills [38]. The heat transfer in 
tubes and motor frames is probably comparable, although some nonsimilarities 
in the air flow patterns exist. Mills investigated several different entrance effects 
for turbulent flow in tubes with a uniform heat flux boundary condition at the 
wall. Three curves that possibly are relevant for a TEFC motor frame are shown 
in Fig. 59. Nux is the local Nusselt number and Nu∞ is the Nusselt number at 
fully developed flow, i.e. when no entrance effects remain. Figure 60 shows a sug-
gested axial variation of the heat transfer coefficient, normalized to 1 at the 
drive end. 
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Figure 59. Entrance effects for   Figure 60. Suggested axial variation of the 
turbulent flow in tubes.   heat transfer coefficient, normalized to 1 
      at x/dh=12. 
 
The curves in Fig. (59) can be described by a constant plus an exponentially de-
creasing value. However, these curves can not be used as they are; some correc-
tions must first be applied. The first correction is due to the heating of the air 
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along the channels, which is neglected in the thermal model, but was not ne-
glected by Mills. In order to correct for this error, the slope of Nux along x must 
be made steeper than in Fig. 59, for instance by adding a linear term. If the tem-
perature rise of the cooling air is, say 30 % of the temperature rise of the frame 
at the drive end, then the linear term should compensate for this by a 30 % lower 
value of Nux at the drive end. The second correction is due to the decrease in air 
velocity along x. This correction can be made by multiplying the curve in Fig. 59 
by the velocity curve in Fig. 57, raised to the power of 0.8. By using the mean 
value of the curves in Fig. 59, and applying the suggested corrections, the curve 
shown in Fig. 60 was constructed. It shows the local value of the heat transfer 
coefficient, based on the above assumptions, and normalized to 1 at the drive end 
of the test motors. It can be described by: 
 

 
    
f (

x

dh
) = 1. 48− 0. 039

x

d h
+ 2. 8e

−0.63
x

dh      (73) 

 
The actual values of the local heat transfer coefficient can be obtained by inte-
grating Eq. (73) along the frame, and by scaling the resulting average value ac-
cording to a measured average heat transfer coefficient. Alternatively, a more 
accurate method can be used, that models the frame with an identification 
model. 
 
An identification model for the frame is shown in Fig. 61. The model is not accu-
rate enough to identify each thermal resistance from the frame to the ambient 
individually; a distribution along x must first be assumed. 
 

Ambient

Fan side Drive side

Frame

 
Figure 61. Model for the identification of the thermal resistances between the 
frame and the ambient. 
 
The boundary conditions of the model are the ambient temperature and the heat 
flux from the interior of the machine and from the end shields. The heat flux 
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from the interior is obtained from an earlier described model (Fig. 31.). The 
amount of heat that goes from the frame to the end shields must necessarily be a 
crude approximation, because it can not easily be measured. The temperature 
gradients at the ends of the frame can be of some help here. At the identification, 
the thermal resistances between the frame and the ambient are calculated using 
 
 

    

R th (
x

dh
,ω ) =

1

k + cf (
x

d h
)ω0.8

        (74) 

 
where c is the constant to be identified. The effect of natural convection and radi-
ation is modelled by the constant k, which is determined by a locked rotor test. In 
principle, the effects of natural and forced convection should not be added in this 
way, but the alternative is significantly more complicated, and would not greatly 
influence the result. The identification is performed by comparing the measured 
and calculated frame temperatures, and adjusting c until a close fit is achieved. 
Figures 62 and 63 show measured and calculated temperatures for rated opera-
tion of the two test machines. 
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Figure 62. Measured and calculated  Figure 63. Measured and calculated 
frame temperatures of the 15 kW   frame temperatures of the 4 kW  
motor. The value c=0.04  Ws0.8K–1  motor. The value c=0.0076  Ws0.8K–1 
 
It can be seen that the chosen function Rth(x) gives a fairly good fit between the 
calculated and measured frame temperatures. Although this does not prove that 
f(x) is the true distribution of α along the frame, it is a good alternative, since the 
local Nusselt numbers in the cooling channels are difficult to measure directly. 
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Figures 64–66 are photos taken by an infrared camera, showing the temperature 
distribution of the 4 kW motor at rated operation. The bright line in Figs 64–66 
is an isotherm. The isotherms visualize, among other things, the peripheral tem-
perature variations, and where the hottest spot of the frame is located. 
 
 
 

 
 
Figure 64. Isotherm Figure 65. Isotherm Figure 66. Isotherm 
at 68° C.   at 65 °C.   at 50° C. 
 
 
5.5.3 Thermal contact resistance between the frame and the stator yoke 
 
For shrink-fitted frames there is a thermal contact resistance between the frame 
and the stator yoke that is not negligible. The temperature drop over this junc-
tion may be appreciable. The magnitude of the thermal contact resistance de-
pends on contact pressure, material softness and surface roughness [1]. In order 
to investigate if the thermal contact resistance is significant also when the frame 
is cast directly on the core, an identification model was used together with the 
results from a test where the rotor is first removed. The advantage of removing 
the rotor is that the heat path to the rotor is eliminated, and the temperature of 
the inner stator tooth surface can be measured, which eliminates the need for 
drilling. The left node in the two-node configuration of the stator teeth (see Fig. 
53), is now equivalent to the stator tooth surface temperature if the teeth are 
lossless. By series-connecting the phases and applying a DC voltage, the stator 
windings are heated by a known power. Because the stator yoke and teeth are 
lossless, the identification model shown in Fig. 67 can be used. 
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Figure 67. Model for identifying the thermal contact resistance between the frame 
and the stator yoke. 
 
Note that the nodes where normally the stator yoke and teeth losses are injected 
are omitted here; only the left node in the stator teeth node configuration is rep-
resented. The thermal resistances between the stator tooth surface nodes and the 
stator winding nodes do not need to be known. Nearly all heat must go through 
the stator core to the frame, only some heat also dissipates from the end 
windings, but this heat can be calculated and deducted using Eqs (63) and (64). 
In order not to exceed maximum winding temperature, an external cooling air 
source can be used.  
 
The steps in the identification procedure are: Calculate the stator surface tem-
peratures for some value of the thermal contact resistance; then compare the cal-
culated temperatures to the measured stator surface temperatures; repeat this 
until measured and theoretical values are equal. It is important that the frame 
and stator surface temperature measurements are performed at the same pe-
ripheral angle and axial distance.  
 
This test was performed for the 4 kW machine, whose frame is cast directly on 
the core. The result corresponded to a temperature drop of only 0.5°C over the 
junction at 70 % of rated losses. The result leads to the conclusion that the ther-
mal contact resistance can be neglected for machines with the frame cast directly 
on the core. 
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5.6 End shields 
 
The end shields are most efficiently cooled at their outer peripheries. The periph-
eries of the end shields are assumed to be in good thermal contact with the 
frame. An end shield node can consequently be connected to the adjacent frame 
node by some arbitrary, low value of the thermal resistance. The thermal resis-
tance between the end shield and the bearing is calculated from the outer 
periphery to the bearing housing by an equation of the same type as Eq. (69). 
 
In order to get some values of the internal heat transfer coefficient of the end 
shields, an identification procedure for the two test motors was performed. The 
model mentioned earlier (Fig. 31) and Eqs (48) and (65) were used to determine 
the amount of heat going to the internal air from the rotor and stator windings. 
This heat must be absorbed by the frame and the end shields. It is assumed that 
the internal heat transfer coefficients of the frame and the end shield are the 
same. Since the temperatures and areas were measured, the heat transfer coeffi-
cients can be identified. The result is shown in Fig. 68 as a function of the peri-
pheral speed of the rotor. The area was calculated from an idealized smooth 
shape of the end shields, thus neglecting the fin arrangement at the inside of the 
end shield.  
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Figure 68. Internal heat transfer coefficient of the end shields . 
 
Two data points were obtained from the tests: one for each end shield. The scat-
ter of the data points depends, among other things, on that different values were 
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obtained for each end shield, which was unexpected since they had the same in-
ternal geometry. The reason is unclear, although a possible explanation is bad 
accuracy in the temperature measurement for the end shields or internal air. It 
is also possible that the heat transfer coefficient of the internal parts of the 
frame is much higher than that of the end shield, since the heated internal air 
reaches the frame first. A further comment on the results shown in Fig. 68 is 
that the 15 kW motor has a larger heat transfer coefficient than the 4 kW motor. 
However, a general size dependence is not assumed on the basis of these 
measurements. Instead, the curve fit shown in Fig. 68 is suggested to be used. It 
was fitted by weighting the data equally for both test machines, and is described 
by 
 
     α = k 1 + k 2u r

0.65         (75) 
 
where k1=15 W/m2K and k2=6.75 (s/m)0.65W/m2K. Equation (75) is similar in 
magnitude to a formula given by Kotrba in [33]. 
 
The external heat transfer coefficients of the end shields are difficult to calculate 
analytically because the air flow conditions around them are not well known. 
The total heat that enters the end shields comes from the bearings, the internal 
air and the frame. The evaluation of the thermal resistances between the end 
shields and the ambient was done by experimenting with different parameters 
and assuming the same speed-dependence as that of the frame. The complete 
thermal model in Fig. 28 was used. The heat transfer coefficients for both the 4 
kW motor and the 15 kW motor were fairly well described by 
 
     αfe = k 3 + k 4u r

0.8         (76) 
     αde = k 5 + k 6u r

0.8         (77) 
 
where k3=k5=15 W/m2K, k4=10 (s/m)0.8W/m2K, and k6=2.5 (s/m)0.8W/m2K. uf is 
the peripheral speed of the fan and αfe and αde are the heat transfer coefficients 
at the fan end and the drive end, respectively. Equations (76) and (77) must be 
regarded as approximative. The area was calculated from an idealized smooth 
shape of the end shields. The fan cover of the 4 kW machine was in good thermal 
contact with the end shield, so the internal fan cover area was included in the 
area calculation for that machine. It is difficult to say whether it is appropriate 
to use the peripheral fan speed to describe αfe and αde. However, the author 
wanted to compare the results with those of Kotrba [33], who gave them in this 
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form. It then turns out that Eqs (76) and (77) give about twice as large value as 
the formulas suggested by Kotrba. It might be better to describe αfe and αde 
more generally as a function of the heat transfer coefficient of the frame, since 
not only the fan speed, but also the fan design affects them. Another, crude, but 
more general approach is to assume that a certain fraction of the total losses 
leaves the machine from the end shields. At rated operation, they would be 12 % 
and 6 % for the 15 kW motor and 19 % and 9 % for the 4 kW motor, where the 
former percentage for each motor concerns the fan end and the latter the drive 
end. 
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5.7 Bearings 
 
Grease-lubricated ball bearings are the most common type of bearing for TEFC-
motors. The bearing consists of the inner and outer races, the balls and the cage, 
which keeps the balls in their positions. The inner race is pressed directly on the 
shaft and the outer race is supported by the end shield. The maximum tempera-
ture of the bearing is usually at the inner race, but can sometimes be at the balls 
(only at very high speeds). The maximum temperature determines what type of 
grease to be used, and affects the regreasing interval. The temperatures of the 
inner and outer races are needed to determine which radial slackness should be 
used. The drive side bearing housing is shown in Fig. 69. The bearing is modelled 
by the thermal network shown in Fig. 70. The inner race and the shaft directly 
below it are lumped together as a node with 25 % of the bearing losses. Likewise, 
the outer race and the inner part of the end shield are lumped together as a node 
with 25 % of the bearing losses. The balls and the cage are modelled by a node 
with 50 % of the bearing losses. In addition, the rubber sealing at the drive end 
causes losses, which are added to the node for the outer race. 
 

rubber
sealing

shaft

inner part
of end shield

grease-filled gap

to end shield

to couplingto rotor

balls

outer race and the inner
part of the end shield

inner race and a
part of the shaft

R0
2

R0
2

outer race
balls

inner race R1

 
Figure 69. Bearing housing.  Figure 70. Bearing thermal model. 
 
The thermal resistance R0 through the bearing depends among other things on 
the equivalent contact surface between the balls and the oil film, which is diffi-
cult to calculate. There is also a thermal resistance R1 in parallel with the bear-
ing due to the grease-filled gap shown in Fig. 69. It was decided to neglect R1 and 
to choose R0 so that the calculated temperatures of the bearing inner and outer 
races became close to the measured ones. This means that the temperature of the 
balls are underestimated. However, this is of little importance as long as the in-
ner race is the hottest part of the bearing. The adopted values of R0 for the bear-
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ings at rated speed were 0.48 K/W for the 15 kW motor (with an average bearing 
diameter of db=77.5 mm), and 0.88 K/W for the 4 kW motor (with an average 
bearing diameter of db=46 mm).  
 
R0 has a significant negative speed dependence, which is assumed to be a lin-  
ear function of the velocity of the balls. Furthermore, if it is assumed that the 
bearing-size dependence of R0 is a linear function of db, a general formula for R0 
can be constructed from the test results of the two test motors 
 
     R 0 = k 1 (0. 12 − k 2d b ) (33 − k 3ωdb )       (78) 
 
where k1=0.45 K/W, k2=1 m–1 and k3=1 s/m. The second factor in Eq. (78) ac-
counts for the size dependence, while the third factor accounts for the speed 
dependence. The value given by Eq. (78) is an approximate value and can only be 
used for bearing diameters and speeds that are close to the values that were used 
to derive the formula, i.e. (46 mm≤db≤77.5 mm) and (ωdb≤14.5 m/s). 
 
Temperature measurements close to the drive side bearings of the test machines 
are presented in Figs 71–72. The only actual bearing temperature that was mea-
sured was that of a sealing plate on the bearing of the 15 kW motor. 
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Figure 71. Measured temperatures close  Figure 72. Measured temperatures  
to and at the bearing, 15 kW machine. close to the bearing, 4 kW machine. 
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6 Steady-state results 
 
6.1 Optimum size of thermal networks 
 
When designing a thermal network for an electrical machine, a decision must be 
made about the level of discretization and the kind of node configurations that 
are desired. In [1,5], multiple-node configurations and a low level of discretiza-
tion (9–10 elements) are proposed. However, a higher level of discretization can 
be implemented without problems. A higher level of discretization can also make 
the multiple-node configurations unnecessary, since the errors from using the 
single-node configuration obviously decrease with increasing number of ele-
ments. The natural question then becomes: What number of elements is needed 
to make errors resulting from the discretization negligible? 
 
To investigate this, a program was constructed in such a way that an arbitrary 
number of nodes could be used to calculate the steady-state temperature of a cer-
tain machine. This model had a constant discretization in the radial direction, 
but the amount of nodes in the axial direction could be freely chosen. There is no 
discretization in the peripheral direction, since a general assumption is that 
there are no peripheral temperature differences (except between the stator teeth 
and the coil sides). Model parameters for the 4 kW and 15 kW machines were 
tested. By comparing results for models of different sizes, the axial discretization 
errors could be identified. Comparisons are shown in Fig. 73. The reason why the 
discretization in the radial direction was not changed is that the radial dis-
cretization is rather self-evident. In short, it can be said that radial 
discretization is not necessary if the radial temperature gradient is small (as in 
the frame and in the rotor bars) or if the internal losses are small compared to 
the external heat input (as in the stator and rotor yokes and the air gap). The 
stator teeth are an exception. They are represented by two-node configurations to 
make further radial discretization unnecessary. 
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In Fig. 73 comparisons are made between 
 
(a) a stator winding model with 5 two-node configurations 
(b) a stator winding model with 20 single-node configurations 
(c) a stator winding model with 5 single-node configurations 
 
It can be seen that the data points of case (a) are the average values of case (b). 
The discretization errors of case (a) and (b) are negligible. The data points of case 
(c) however, have errors up to 0.5 °C. This would be expected as a result of the 
lower level of discretization. Even so, an error of 0.5° C is quite a small error, so 
it can be concluded that single-node configurations are sufficient even for a small 
model. However, if a small model is used, the resolution is poor. In order to 
obtain more detailed information, a large model similar to case (b) would be 
needed. Thus the question of the optimum network size is answered by the need 
for resolution. 
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6.2 Sensitivity analysis 
 
In order to determine how errors in the parameters of the thermal model affect 
the temperature predictions, a sensitivity analysis was performed. The tempera-
tures of the stator end winding and the bearing at the drive side were calculated 
before and after some values of thermal resistances had been changed by 20 %. A 
small resulting change in temperature indicates a low sensitivity to errors in 
those particular thermal resistances. The sensitivity to erroneous stator winding 
losses, rotor losses and bearing losses was also investigated. The sensitivity 
analysis was limited to rated load at 50 Hz and at an ambient temperature of 25° 
C. The parameters that were changed and the corresponding changes in temper-
ature are given in Table 3. 
 
Table 3. Results of the sensitivity analysis. The temperature changes of the 15 kW 
motor are given first and the temperature changes of the 4 kW motor are given 
within parenthesis. Each parameter was increased by 20 %. 
 
Parameter description 
(parameter was increased by 20 %) 

End winding 
∆T [°C] 

Bearing   
∆T [°C] 

Rth between stator windings and stator teeth 3.07 (3.16) 0.17 (0.14) 
Rth between frame and ambient 7.06 (5.24) 5.88 (4.58) 
Rth between end shields and ambient 1.19 (1.52) 1.54 (1.65) 
Rth between end windings and internal air 0.99 (0.77) -0.10 (-0.06) 
Rth between rotor end rings and internal air -0.37 (-0.10) 0.30 (0.17) 
Rth between end shields and internal air 1.74 (1.06) 0.15 (0.26) 
Rth between rotor and shaft 0.02 (0.02) -0.24 (-0.11) 
Rth between coupling and ambient 0.09 (0.13) 0.90 (0.81) 
Rth between rotor and stator teeth 0.29 (-0.03) 1.65 (1.15) 
Rth through bearings 0.05 (0.09) 0.84 (0.56) 
Rth between adjacent frame elements 0.59 (0.76) -0.06 (0.37) 
stator winding losses 9.73 (11.29) 2.75 (4.16) 
rotor losses 7.53 (3.76) 7.00 (4.56) 
bearing losses 0.10 (0.07) 0.73 (0.33) 
 
From Table 3 it can be seen that it is very important that the losses are accu-
rately calculated, especially the stator winding losses. It is also very important 
that the thermal resistances between the frame and the ambient are correct. The 
thermal resistance between the stator windings and the stator teeth is of course 
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important for the calculation of the stator end winding temperature. Interest-
ingly, the stator end winding temperature is more sensitive to the parameters of 
the end shields than to those of the end windings. This is probably because the 
end shields affect the internal air temperature more than the end windings do. 
The bearing temperature is sensitive to the frame- and rotor-related parameters. 
The bearing losses, however, are so small for the test machines that a 20 % 
increase does not change the bearing temperature much. A 20 % increase in the 
bearing thermal resistance gives a moderate change in the ball temperature, 
whereas the inner race temperature will be increased twice as much as the ball 
temperature. 
 
 
6.3 Comparison of calculated and measured data 
 
A comparison of calculated and measured steady-state temperatures was made 
using the analytical or empirical formulas for the thermal resistances that were 
suggested in Chapter 5. The losses that were used in the thermal model are the 
same as previously shown in Tables 1–2. The ambient temperature was different 
in each test but always between 20 and 25 °C. 
 
 
6.3.1 4 kW motor 
 
The results for the 4 kW motor are shown in Figs 74–79. The calculated tempera-
tures are shown as solid lines and the measured temperatures as point values. 
The average stator winding temperature, measured by the resistance method, is 
shown as a dashed line. It can be seen that the agreement between measured 
and calculated frame and stator winding temperatures is good except at 10.6 Hz 
where the calculated frame temperature is lower than the measured. The 
thermocouples on the end windings are cooler than predicted, which can be 
explained by the influence of the air and their positions at the surface of the end 
windings. The calculated rotor temperature is slightly lower than the measured 
one, which probably is explained by underestimated rotor losses or overestimated 
heat flow from the end rings to the internal air. 
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Figure 74. Temperatures of the 4 kW  Figure 75. Temperatures of the 4  
motor with locked rotor.    kW motor at 10.6 Hz, 17.7 Nm. 
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Figure 76. Temperatures of the 4 kW  Figure 77. Temperatures of the 4 
motor at 29.5 Hz, 26.7 Nm.   kW motor at 48.8 Hz, 26.7 Nm. 
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Figure 78. Temperatures of the 4 kW  Figure 79. Temperatures of the 4 
motor at 69.9 Hz, 26.6 Nm.   kW motor at 89.2 Hz, 17.6 Nm. 
 
 
6.3.2 15 kW motor 
 
The results for the 15 kW motor are shown in Figs 80–85. It can be seen that the 
agreement between measured and calculated frame temperatures is good. The 
calculated stator winding temperatures are somewhat higher than the measured 
ones for the two tests using rated torque (Figs 82–83). This is partly explained by 
overestimated internal air temperatures and probably also by temperature 
dependence of the thermal resistance between the coil sides and the stator teeth, 
which was neglected. The calculated rotor temperature is slightly higher than 
the measured ones, which probably is explained by overestimated rotor losses or 
underestimated heat flow from the end rings to the internal air. 
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Figure 80. Temperatures of the 15 kW  Figure 81. Temperatures of the 15  
motor with locked rotor.    kW motor at 9.6 Hz, 97 Nm. 
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Figure 82. Temperatures of the 15 kW  Figure 83. Temperatures of the 15 
motor at 29.7 Hz, 147 Nm.   kW motor at 47.9 Hz, 148 Nm. 
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Figure 84. Temperatures of the 15 kW  Figure 85. Temperatures of the 15  
motor at 69.8 Hz, 99 Nm.    kW motor at 88.7 Hz, 94 Nm. 
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6.4 A small thermal model with simple implementation 
 
The thermal model described so far is the logical choice of model for design pur-
poses. For machine utilizers who want to simulate the temperature with less 
preparations, a simpler model has been designed, see Fig. 86. This model ne-
glects the variation of the heat transfer coefficient along the frame, so that the 
machine temperatures will be symmetrical along the axial direction. The asym-
metrical temperature distribution that occurs in reality can be taken into consid-
eration by empirical correction factors. 
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Figure 86. A simple thermal model for machines with cage rotors. 
 
The model is similar to the model proposed by Champenois et al. [39], although 
they excluded the bearings in their model. It is also similar to the model used by 
Mellor et al. [1], except that it does not contain two-node configurations. Since 
the model should be a simple one, it is probably not motivated to use two-node 
configurations, since the gain in accuracy is rather small. The rotor is lumped 
into one element, which corresponds to the average rotor surface temperature. 
The temperature of the shaft is not really interesting to know, so it is only repre-
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sented as a part of the thermal resistance between the rotor and the bearings. 
The internal air is not represented, because a Y-∆ transformation can be made 
that eliminates this node. It is recommended to determine Rth1 and Rth4 from 
measurements, and to use the manufacturer's data to calculate all the other 
thermal resistances. The recommendations are given with some restrictions: The 
stator windings must be impregnated by the same technique as the test motors 
(not vacuum-impregnated), and the dimensions must not greatly differ from 
those of the test motors. 
 
Rth1 depends above all on the fan and frame design. It can be calculated from the 
fan and frame design [33], but the calculations are complex and not necessarily 
accurate (the fan, for instance, must have a certain geometry for the equations to 
hold). It is therefore advisable to measure Rth1. If this is impossible, it is best to 
assume a typical rated temperature rise of the frame, e.g. 45 K, and choose Rth1 
accordingly. If the measured average temperature rise θf of the frame and the 
total losses Ptot are known, Rth1 is given by 
 
 

    
R th 1 =

θf
Ptot

          (79) 

 
The speed dependence of Rth1 is given by 
 
 

    

R th 1 =
1

c1 + c2ω
0.8          (80) 

 
where c1 accounts for natural convection and radiation. c1 can be identified by 
performing a locked rotor test, during which the input power and average frame 
temperature rise are measured. When c1 is known, c2 can be identified from a no-
load test in the same way as explained above. 
 
Rth2 is half the value given by Eq. (66) with l=lFe, where lFe is the stator core 
length. However, if the frame is shrink-fitted, there is a thermal contact resis-
tance between the frame and the stator yoke, which can be identified as ex-
plained in detail in Section 5.5.3. The identified value is added to Rth2. 
 
Rth3 is half the sum of the values given by Eq. (66) and Eq. (68), with l=lFe. 
 
Rth4 can be calculated using Eq. (61) with l=lFe, da=0.17–0.30 mm (see Section 
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5.3.1) and λa=0.03. If some of the material data are unknown, the data of the test 
machines can be used (Appendix B). If the average stator winding temperature 
can be measured at rated load, it is advisable to modify Rth4 so that the calcu-
lated average stator winding temperature exactly matches the measured one. 
 
Rth5 is the value given by Eq. (52) with 

    
l =

lav

12
, where lav is the average conduc-

tor length of half a turn. 
 
Rth6, Rth7 and Rth8 are treated next. In the simplified thermal network, there is 
no node representing the internal air. This node has been eliminated using a Y-∆ 
transformation as shown in Fig. 87. 
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 Figure 87. Y-∆ transformation to eliminate one node 
 
Some empirical relations for the heat transfer coefficients associated with R1, R2 
and R3 have been identified. For R1, Eq. (75) can be used and the area should be 
the sum of the internal end shield area and the internal frame area. For R2 and 
R3, see Eqs (48) and (65), respectively. The resulting thermal resistances must be 
divided by two since the heat paths at the drive side and the fan side are in par-
allel. 
 
Rth9 is calculated by using Eqs (44) and (46) with l=lFe, and adding half the 
value of the stator teeth thermal resistance given by Eq. (68). For simplicity, ra-
diation can be neglected. Nu=2 can be used for Ta(m)<1740 and Eq. (43) for 
Ta(m)>1740. Values for ν and λf are found in Appendix B. 
 
Rth10 consists of four parts that should be added together. The first part is the 
thermal resistance of the rotor yoke. Use Eq. (41) with l=lFe to get this value. 
The second part is the thermal contact resistance between the rotor core and the 
shaft. Since this value depends on the contact pressure, it may be difficult to 
evaluate. In that case, use the same value as given by Eq. (41). The third part is 
the thermal resistance through the shaft. Use half the value given by Eq. (50) 
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with l equal to the distance between the rotor centre and the bearings. The 
fourth part is equal to Rth11. 
 
Rth11 is 25 % of the value given by Eq. (78), since one node models both bearings. 
 
 
Some results from calculations with the simple model are shown in Table 4. Us-
ing the loss data of Tables 1–2, Rth1 was chosen so that the frame temperature 
exactly matched the measured average frame temperature of the load cases. Rth4 
was derived from the already identified values of the large thermal model (see 
Section 5.3.1). The temperatures can be compared to the corresponding results of 
the large thermal model in Figs 77 and 83. It can be seen that the coil sides of 
the 4 kW motor are slightly cooler using the simple model. This is caused by 
neglecting the axial temperature variations of the frame. On the other hand, the 
use of single-node configurations for the stator teeth causes a 1–2 °C positive 
error. 
 
Table 4. Results for the simple model: (a) Temperatures of the 4 kW motor at 48.8 
Hz, 26.7 Nm, (b) Temperatures of the 15 kW motor at 47.9 Hz, 148 Nm. 
 
 Frame  

 
[°C] 

Stato
r yoke 
[°C] 

Stator 
teeth 
[°C] 

Coil   
sides 
[°C] 

End 
windings 
[°C] 

Rotor   
 
[°C] 

Bear-
ings 
[°C] 

(a): 4 kW motor 61.6  64.3 72.6 94.2 101.4 119.0 72.2 
(b): 15 kW motor 69.8  74.4 85.9 109.9 116.3 166.2 81.0 
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7 Time-dependent problems 
 
The thermal network can be extended to enable transient solutions. A thermal 
capacity Ci is then added between each node and the ambient. The resulting sys-
tem of equations is 
 
 

    

C i

∂θi

∂ t
= Pi −

θi

R i,i
−

θi − θ j

R i , jj=1

n

∑ i = 1, ... ,n     (81) 

 
By defining a thermal capacity matrix  
 

 

    

C =

C1 0 0 ⋅ ⋅ ⋅ 0

0 C2 0 ⋅ ⋅ ⋅ 0

0 0 C3 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ Cn

 

 

 
 
 
 

 

 

 
 
 
 
       (82) 

 
the following matrix equation results: 
 
 

    
C
∂Θ
∂ t

= P − GΘ          (83) 
 
Usually, Eq. (83) is used for transient solutions. In this work, however, the ambi-
ent temperature is not assumed to be constant, and Eq. (83) can not be used. 
There are many cases where the ambient temperature varies in a broad range, 
for instance outdoor sites. An example is a wind turbine generator where the 
ambient temperature depends on the outdoor temperature, the air velocity, the 
solar radiation and the load. To get a transient solution when the ambient tem-
perature varies, a temperature vector 
 

 

      

T =

T1
T2
T3
⋅ ⋅ ⋅
Tn

 

 

 
 
 
 

 

 

 
 
 
 
          (84) 

 
must be used instead of the temperature-rise vector Θ. By letting one of the 
nodes represent the ambient temperature, and by updating this temperature 
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during the simulation, a transient solution is obtained. The resulting system of 
equations is 
 
 

    

C i

∂T i

∂ t
= Pi −

Ti − T j

R i, jj=1

n

∑ i = 1,... ,n      (85) 

 
In a matrix form we then have 
 
 

    
C
∂T
∂t

= P − GT          (86) 
 
Apart from ambient temperature, also frequency, voltage and torque are inputs 
that are updated during the simulation. Consequently (and also due to their 
temperature dependence) G and P must be recalculated at regular intervals.  
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7.1 Thermal capacity 
 
The thermal capacity of an element is calculated by 
 
 

    
C th = m ici

i=1

n

∑  
        (87) 

 
where m is the mass, c the heat capacitivity and index i signifies different mate-
rials in the element. Cth is generally easy to calculate from the geometry and 
material data of a machine. However, the calculations of some Cth deserve a com-
ment. Cth for a stator winding element consists of the thermal capacities of both 
the copper and the insulation. The weight of the impregnation resin can be calcu-
lated from the space factor and insulated area of the slots. It is suggested that 
the end windings are assumed to have the same cross-sectional area as the coil 
sides. 
 
Furthermore, the treatment of two-node configurations should be as in Fig. 88; 
The thermal capacity of the element, Cth1, belongs to the node that models the 
average temperature of the element. A negligibly small thermal capacity, Cth2, is 
connected to the other node. The only reason for this is that the transient solu-
tion process used demands all nodes to have a thermal capacity. When using the 
trapezoidal rule as the integration algorithm, it was also noted that Cth2 must be 
significantly smaller than Cth1 to avoid stability problems. 
 

R0
6

R0
2

R0
2

Cth1

Cth2

 
 
Figure 88. Thermal capacities in a two-node configuration 
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7.2 Numerical integration methods 
 
The computer time needed to complete a simulation, and the accuracy of the so-
lution depend on the numerical integration method that is used. Methods re-
ported to have been used before to solve this specific problem include Runge-
Kutta methods [6] and variants of implicit methods [7]. The advantage of an im-
plicit method is that it has better stability. This makes it possible to use a time 
step that equals the updating interval of P and G. According to tests that were 
performed for thermal models ranging in size from 10 to 100 nodes, an explicit 
method like Runge-Kutta is almost always slower than an implicit method 
mainly because a shorter time step must be used. If there are two-node configu-
rations in the thermal network, an implicit method is strongly recommended. In 
fact, all of the tested explicit methods failed to converge for two-node configura-
tions because of the negative thermal resistances. Several integration methods 
were tested for the models and the fastest method was the implicit Adams-
Moulton method of 2nd order (also known as the trapezoid rule) which is de-
scribed by the algorithm 
  
 

      
Tn +1 = Tn +

h

2
(f ( t n +1, Tn +1) + f ( t n , Tn ))      (88) 

 
where h is the time step and f the derivative function C-1(P-GT). The global er-
ror was found to be negligible for practical time steps of about 1 minute. Higher 
order Adams-Moulton methods are not practical, since they are multi-step 
methods that require P and G to be constant.  
 
However, in some cases an explicit method might be best, namely when it con-
verges for a time step that equals the chosen indata updating interval. This typi-
cally happens for smaller thermal networks or larger machines. In such a case, a 
2nd order Runge-Kutta method is a good choice (Euler's forward method is in fact 
faster but the tests indicate that the error of this method would not be negligible 
for such a case). 
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7.3 Simulations 
 
Temperature simulations and measurements were made in order to check the va-
lidity of the thermal model with 107 nodes. The measurements were performed 
at 3 points: the frame, the stator end winding and the rotor (the rotor tempera-
ture was only measured for the 15 kW motor). The hottest thermocouple on the 
drive side of the stator end winding was used since that thermocouple probably 
was closest to the average temperature in a cross-section. The measurements 
were made by a combined filter/amplifier and a computer with plug-in card. 
Samples were taken every minute. Three measurements are shown. Figure 89 
shows a step response for the 15 kW motor, where the machine is started cold 
and loaded by rated torque at constant voltage and frequency. Figure 90 shows a 
similar step response for the 4 kW motor. Figure 91 shows the response of the 15 
kW motor to five different load sequences. The voltage/frequency ratio is constant 
during the first four sequences, but the torque and the frequency are changed as 
indicated by the figure text. During the last sequence, the machine is switched 
off and standing still.  
 
The measurements show that the thermal model is capable of calculating the 
temperatures in the machines with good accuracy for different speeds and loads. 
However, in the case of the 15 kW motor, a condition for this was that the losses 
were measured and separated for different operating points. The calculated sta-
tor winding temperature is higher than the measured one for the 15 kW motor. 
This is partly explained by the fact that the empirical equations for some of the 
thermal resistances were not tailor-made but adapted to fit both the 15 kW and 
the 4 kW motors. Temperature dependence of the thermal resistance between the 
stator windings and the stator teeth as well as minor errors in the loss calcu-
lations may also have contributed to the error, which is in the order of 4° C. The 
rotor temperature is also overestimated, but this is probably because the real ro-
tor losses were lower than the calculated ones. The frame temperature of the 4 
kW motor appears to be overestimated, but this is rather a result of axial 
temperature differences; the frame temperature as a whole was in close 
agreement with the calculated temperatures. 
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Figure 89. Measured and simulated temperatures of the 15 kW motor at approxi-
mately rated conditions. Solid lines are measured and dashed lines are simulated. 
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Figure 90. Measured and simulated temperatures of the 4 kW motor at approxi-
mately rated conditions. Solid lines are measured and dashed lines are simulated. 
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Figure 91. Measured and simulated temperatures of the 15 kW motor at changing 
conditions. The operating conditions are approximately: 2/3 rated load at 50 Hz 
for t=0–205 min; no load at 50 Hz for t=205–270 min.; rated load at 30 Hz for 
t=270–320 min.; no load at 70 Hz for t=320–420 min.; switched off after t=420 
min. Solid lines are measured and dashed lines are simulated. 
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7.4 Wind energy applications 
 
A possible application of the thermal models is to determine the loadability of 
wind turbine generators, which usually are TEFC induction machines. Due to 
the fact that the turbine and the gear-box usually are dimensioned for large over-
loads, it may be profitable to utilize the generator close to its thermal limit, even 
if this means exceeding the rated load. Simulations [10] showed that the 15 kW 
motor can be overloaded by 20 % continuously at room temperature without ex-
ceeding the thermal limit of the winding insulation. A thermal model can be used 
in the process of determining a control algorithm for the wind turbine, by giving 
information about the response to changes in load, speed and ambient tempera-
ture. However, the control system must probably rely on feedback from measured 
stator winding temperatures, since there are too many error sources in a purely 
theoretical model. The most important questions are then whether the measured 
stator winding temperatures are reliable and what the relation is between the 
measured temperatures and the actual hot-spot temperature of the winding. 
 
From the experiences of the 15 kW motor, it seems like temperature sensors that 
are attached by a good thermal contact to the surface of the end windings can be 
expected to be 5–10° C colder than the average temperature in a cross-section of 
the end winding (see Fig. 49). This difference is likely to be proportional to the 
temperature rise of the stator windings. It is suggested that the hot-spot temper-
ature in a cross-section of the end windings can be approximately calculated from 
the average temperature by Eq. (58). It can probably be assumed that the drive 
side end winding is the hottest part of the winding. However, the axial tempera-
ture differences can be more carefully analysed using the thermal network of Fig. 
28. 
 
Some other aspects that should be investigated before beginning to overload an 
electric machine are the bearing temperature and the effect of thermal expansion 
of the rotor. 
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8 Conclusions 
 
The general goal of the work was to design a suitable thermal model that can be 
used as a tool for constructing cage induction motors, and to describe the related 
problems and aspects of implementation. This goal has been achieved by a 107-
node thermal network. The related problems, i.e. the loss calculation and the 
thermal resistance calculation have been subject to a detailed examination. The 
method of implementation and the results have been presented.  
 
A particular goal was to investigate the method and level of discretization of the 
machine. Concerning the level of discretization, the conclusion is that it is not 
necessary to use a large number of nodes for the sake of accuracy, but it is 
nevertheless better than a small number of nodes because it gives more detailed 
temperature information. Regarding the method of discretization, i.e. how the 
machine parts are lumped and what kind of node-configurations should be used, 
the conclusion is that one-node configurations can be used for all elements except 
the stator teeth, which should be modelled by two-node configurations. The 
lumping of the elements are determined by temperature differences and 
geometry considerations: volumes having small temperature differences are 
lumped together naturally, because boundaries between volumes of different 
temperature are geometrically fairly well defined in a machine. 
 
Another important goal was to establish methods to identify unknown thermal 
resistances, since there does not seem to exist any recommendations on how such 
measurements should be performed. It would of course be best to make a direct 
measurement of the unknown thermal resistances, but unfortunately this would 
necessitate the making of complicated dummies. This goal has instead been 
achieved by the use of identification models. These models require a fairly high 
accuracy of the temperature and loss measurements. The results for the two test 
motors have been used to form some empirical relations that can be used for 
other machines if they do not differ too much in shape or size. 
 
The thermal resistance between the stator winding and the stator teeth has been 
identified using an identification model. It can also be calculated using a rectan-
gular slot approximation with a surrounding equivalent air pocket. The winding 
itself is assumed to be completely free from air pockets. From the identification 
model, a value of 0.17–0.30 mm of the thickness of the equivalent air pocket has 
been derived. The thickness is likely to be larger for larger machines and 
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depends on the method of applying the impregnation (vacuum-impregated 
machines are likely to have smaller air pockets). The thermal resistance between 
the stator winding and the stator teeth decreases slightly with temperature. The 
temperature dependence has not been completely analysed, so it is worthwhile to 
make a follow-up investigation.  
 
The heat transfer coefficients of the end windings and other parts inside the end 
regions of the machine can be related to the peripheral speed of the rotor. The 
heat transfer coefficient between the rotor ends and the internal air was identi-
fied as a function of the rotor peripheral speed. The heat transfer coefficient be-
tween the stator end windings and the internal air could be determined approxi-
mately. Although the results are rather scattered, a 0.6 power-of-speed relation 
is suggested. However, a sensitivity analysis has shown that the stator winding 
temperature is more sensitive to the heat transfer coefficients of the end shields 
than that of the end windings, because they determine to a greater extent the 
temperature of the internal air. Thus, it is important to know the heat transfer 
coefficients of the end shields. Empirical relations are given for the internal and 
external heat transfer coefficients of the end shields, that probably are rather 
crude, but nevertheless better than to neglect their influence.  
 
When it comes to the modelling of the frame, the heat transfer coefficient must 
be measured; it is not easy to calculate it from geometry data. This measurement 
should not be a problem for a manufacturer who only uses a few standard frame 
and fan arrangements. Entrance effects and reduction of cooling air velocity 
along the frame can be modelled by assuming that the local heat transfer coeffi-
cient decreases exponentially towards a constant value along the frame. The 
speed dependence can be modelled as a constant plus a 0.8 power-of-speed term.  
 
The bearings can be modelled by lumping together the inner and the outer race 
with parts of the shaft and the end shield, respectively. The balls form a separate 
node. The thermal resistance of a bearing decreases with increasing speed; an 
empirical relation is suggested. 
 
A secondary result of the study is the development of a small thermal network, 
which may be more convenient for users of a specific machine who want to 
investigate its loadability. It is suggested in detail how its thermal resistances 
should be calculated or measured.  
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It is shown that additional losses and no-load stray losses can be important error 
sources in the thermal calculations. A finite element method can be used to 
calculate those losses in the stator, but the rotor losses are difficult to calculate 
accurately, especially if the rotor bars are skewed. The fundamental rotor and 
stator winding losses can be expected to be sufficiently accurately calculated by 
using the equivalent circuit of the induction machine. The friction and windage 
losses are usually too small to have a large influence on the machine 
temperatures. 
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Appendix 
 
 
A Data of the test motors 
 
The MBT180L is a 6-pole motor with 36 stator slots and 39 rotor slots. The elec-
trical steel used for the rotor and stator cores is 0.5 mm SURA DK70, which con-
tains 1 % Si. The temperature class of the stator winding is F (155° C). The rotor 
cage winding is skewed one stator slot pitch (herring-bone skew). The MBT112M 
is a 4-pole motor with 36 stator slots and 28 rotor slots. The electrical steel is 
0.65 mm SURA DK70. The temperature class and the skew are the same as for 
the MBT180L. Geometrical data are given in Tables A.1–A.2 and the parameters 
of the equivalent circuit are given in Table A.3 
 
Table A.1. Geometry data. 
       MBT180L  MBT112M 
stator outer diameter 291.2 mm 187.2 mm 

stator inner diameter 190.2 mm 115 mm 

core length 230.0 mm 105 mm 

air gap 0.45 mm 0.35 mm 

equivalent air gap 0.61 mm 0.45 mm 

rotor inner diameter 55 mm 38 mm 

stator slot area 185 mm2 96 mm2 

rotor slot area 76.2 mm2 68.5 mm2 

end ring height, length 24 mm, 18 mm 17 mm, 9.5 mm 

rotor fin height, length 23 mm, 30 mm 15 mm, 13 mm 

average frame thickness (adjacent to core) 4.2 mm 3.9 mm 

frame thickness before and after the core 9 mm 6 mm 

length of the frame (excluding end shields) 370 mm 175 mm 

bearing average diameter 77.5 mm 46 mm 

frame area including fins and end shields 1.35 m2 0.37 m2 

drive end shield exterior area 0.12 m2 0.04 m2 

drive end shield interior area 0.12 m2 0.04 m2 

fan end shield exterior area 0.12 m2 0.069 m2 

fan end shield interior area 0.12 m2 0.034 m2 

fan diameter 280 mm 170 mm 
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Table A.2. Stator winding data. 
      MBT180L   MBT112M 
average length of half a turn 415 mm 260 mm 

average length of the overhangs 185 mm 155 mm 

copper area in a slot 72.3 mm2 38.4 mm2 

insulated slot area 146 mm2 71 mm2 

slot insulation thickness about 0.4 mm about 0.4 mm 

 
 
Table A.3. Parameters of the equivalent circuit for the test machines (at 20° C). 
 
     MBT180L   MBT112M 
stator resistance 0.18 Ω/phase 1.26 Ω/phase 

stator leakage reactance 0.8 Ω/phase 2.46 Ω/phase 

rotor resistance 0.19 Ω/phase 0.97 Ω/phase 

rotor leakage reactance 0.65 Ω/phase 2.44 Ω/phase 

magnetizing reactance 12.6 Ω/phase 53.2 Ω/phase 
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B Material data 
 

The material data that was used to calculate the thermal resistances of the test 
machines were taken from Swedish standards and international handbooks. In 
Table B.1, the properties of the materials in the test motors are given. In those 
cases where the temperature dependence is not negligible, the temperature coef-
ficient at 0° C is given. 
 

Table B.1. Material data. 
 
      Heat capacitivity      Density Heat conductivity 
Material      Used in          [J/kg.K]              [kg/m3]           [W/m.K] 
Cu 99.90 
 

stator winding 385 8900 395 

Al 99.5 
 

rotor cage 900 2705 234 

Al - Si 12 
 

frame 960 2650 150 

Steel SS1550 
 

shaft 460 7800 51 

Unsaturated  
polyester 

stator winding 
impregnation 

1700 1350 0.2 

SURA DK-70 
(1 % Si) 

stator and rotor core 
 

460 7800 38 

air 
 

air gap 
internal air 
ambient air 

1010 1.23 at 0°C 
temperature 
coefficient 
- 0.00278 K-1 

0.0243 at 0°C 
temperature 
coefficient 
69.4.10-6 K-1 

 
 
The kinematic viscosity of air is ν = 130.92.10-7 m2/s at 0°C and has the tempera-
ture coefficient 1.08.10-7 K-1. The Prandtl number of air is Pr=0.71 in the rele-
vant temperature range. The volume coefficient of expansion of air is β=1/T, 
where T is the absolute temperature of the air. 
 


