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An analytical tool for the evaluation of wind power generation 

 

Master’s Thesis in the Sustainable Energy Systems programme 

NELLY FORSMAN 

Department of Energy and Environment 

Division of Electric Power Engineering 

Chalmers University of Technology 

 

ABSTRACT 

Based on a system previously developed for district heating by Göteborg Energi, a 

tool for monitoring and evaluation of wind power generation has been developed. 

With the tool it is possible to detect long-term trends of the turbine’s performance. 

Parameters influencing the power generation were identified to be wind speed, wind 

direction and air density. These were combined to create models which represent 

historical data from specific wind turbines and can be used as a reference signature. 

To get the signature independent of air density and comparable, measured data was 

normalized according to standard IEC 61400-12-1. With the tool, it is possible to add 

new data and compare it with the reference signature. If new data is deviating more 

than a specified value from the reference, an alarm is initiated. It was found that a 

method based on piecewise linear regression with seven pieces could be used to 

parameterize the data. The method of bins, where average values of power and wind 

speed in small intervals are interpolated to construct a curve, resulted in an even more 

accurate representation of the historical data. A third method for parameterization was 

investigated, polynomial regression. This method, however, returned lower accuracy 

than the other methods. 

Three concepts to generate alarms in case of deviating wind-turbine performance were 

developed. Piecewise linear regression was combined with an alarm concept where 

alarms are initiated when the present data deviates more than a predefined threshold 

from the reference signature. Another alternative of parameterization and alarm 

generation returning satisfying results consists of the method of bins for both 

parameterization and detection of deviations. For this model, a larger amount of data 

is needed than for the other models. With all aspect taken into account the 

recommendation to Göteborg Energi was to apply the piecewise linear regression, 7 

pieces, combined with constant limit method for alarm generation. 

The models were developed using data from Göteborg Energi’s wind turbines at 

Risholmen in the harbour of Gothenburg. These turbines have a rated power of 

600 kW and are of the type Vestas V44. 

 

Key words: wind power, monitoring system, performance monitoring 
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Ett analysverktyg för utvärdering av vinkraftproduktion 

Examensarbete inom mastersprogrammet Sustainable Energy Systems 

NELLY FORSMAN 

Institutionen för Energi och Miljö 

Avdelningen för Elteknik 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Göteborg Energi har sedan 2006 tillbaka ett system för kontroll av fjärrvärme-

leveranser. Ett liknade system för kontroll och övervakning av vindkraftsproduktionen 

efterfrågades. Vindhastighet, vindriktning och luftens densitet identifierades vara de 

parametrar som påverkar produktionen mest. Dessa parametrar kombinerades och 

användes i tre olika modeller där historisk data parametriserades för att användas som 

en referenssignatur. I modellerna kan ny data läggas in och jämföras mot 

referenssignaturen. Om den nyare datan avviker från referensen initieras ett larm. 

En metod där styckvis linjär regression används för att parametrisera data visade sig 

kunna användas. En annan metod som också visade sig fungera bra var binmetoden. 

Denna metod bygger på interpolation av medelvärden för små delintervall. 

Noggrannheten för denna metod blev något högre. Den tredje metoden som 

utvecklades bygger på polynomregression, vilket dock visade sig ge lägre nog-

grannhet än övriga undersökta metoder.  

För att kunna detektera fel och avvikelser utvecklades tre tillvägagångssätt. Styckvis 

linjär regression kombinerades med en metod där larm initierades om avvikelsen var 

större än en fördefinierad gräns för accepterade avvikelser. Den tidigare nämnda 

binmetoden visade sig också kunna användas för larmdetektering. Denna kombination 

kräver en större mängd data men visade goda resultat. Med dessa metoder är det 

möjligt att identifiera trender och utvärdera turbinens prestanda för en längre period. 

Med hänsyn tagen till alla olika aspekter blev rekommendationen till Göteborg Energi 

att tillämpa styckvis linjär regression, 7 linjer, och konstanta gränser baserade på   för 

larmgenerering. 

För att utveckla modellerna användes data från Göteborg Energis vindkraftverk på 

Risholmen i Göteborgs hamn. Dessa turbiner är alla av typen Vestas V44 och har  

maximal effekt på 600 kW. Mängden data tillgänglig för analys var begränsad och 

möjligheterna att tillämpa modellerna på andra typer av turbiner kunde inte testas.. 

Nyckelord: vindkraft, övervakningssystem, prestandaövervakning 

 



 

Contents 

ABSTRACT I 

SAMMANFATTNING II 

CONTENTS I 

PREFACE III 

NOMENCLATURE IV 

1 INTRODUCTION 1 

1.1 Problem description 1 

1.2 Previous work 2 

1.3 Purpose 2 

1.4 Scope and objectives 2 

2 BACKGROUND 3 

2.1 Theory 3 

2.2 Existing systems for wind turbine monitoring 4 

2.3 Mathematical models 5 

3 CURRENT SYSTEM AT GÖTEBORG ENERGI 9 

3.1 Kasper 9 

3.2 Available data for wind power generation 10 

4 IDENTIFICATION OF INFLUENCING PARAMETERS 13 

4.1 Wind speed 13 

4.2 Wind direction 14 

4.3 Turbulence 17 

4.4 Air density 17 

5 MODEL DEVELOPMENT 21 

5.1 Model approach 21 

5.2 Detection and rejection of erroneous data 22 

5.3 Parameterization of the reference signature 23 

5.3.1 Piecewise linear regression – 4 pieces 24 

5.3.2 Piecewise linear regression – 7 pieces 25 

5.3.3 Polynomial regression 26 

5.3.4 Method of bins 28 

5.4 Generation of alarms 30 

5.4.1 Constant limits along the curve 31 

5.4.2 Piecewise limits 32 



 

 
II 

5.4.3 Method of bins for alarms 33 

6 COMPARISON OF THE DIFFERENT MODELS 35 

6.1 Parameterization 36 

6.2 Alarm generation concepts 36 

7 ANALYSIS AND DISCUSSION OF ALTERNATIVE SCENARIOS 39 

7.1 Lack of temperature and pressure data 39 

7.2 Lack of wind direction sensor 41 

7.3 Lack of historical data 42 

7.4 Filtering sensitivity 44 

8 CONCLUSIONS 47 

8.1 The tool and method 47 

8.2 Future work 48 

9 REFERENCES 49 

 

APPENDIX 1 – Diagrams of parameterizations and alarms (Separate document) 

 

 

 

 

 

 

 

 

 



 

Preface 

The thesis has been carried out between May 2011 and October 2011 at Göteborg 

Energi at the department TK (Teknisk Kundkommunikation). The project was 

financed and commissioned by the department OE (Förnyelsebar el) under the 

auspices of Jonas Cognell.  

The department OE is working with development of the wind power generation. 

Today, the generation cannot be supervised efficiently by any system at Göteborg 

Energi. In 2006, a master’s thesis at TK resulted in a system for monitoring and 

quality control of district heating named Kasper. This system is now in use and 

contributes strongly to ensure the measurement quality for district heating. In the 

thesis project presented in this report, a similar system has been developed for wind 

power. A first version of Wind-Kasper has been implemented in parallel to this work 

by Therese Berge, Kentor.  

The idea and the first initiative of the project were launched by Ola Jobring at TK, 

Göteborg Energi. During the work with the thesis, Ola has been the supervisor and 

has contributed with invaluable help and support. I would also like to thank Katharina 

Fischer at the Department of Energy and Environment, Division of Electric Power 

Engineering, who was the supervisor at Chalmers and assisted with qualified guidance 

and support. Thanks also to Professor Torbjörn Thiringer who has contributed with 

valuable specialist expertise. 

 

Göteborg, October 2011 

Nelly Forsman 



 

 
IV 

Nomenclature 

Roman letters 

  Parameter in the vector   determing the logistic function        

A Rotor swept area (m
2
) 

  Vector containing parameters determining a parameterized curve 

   Power coefficient 

  East 

    East-north-east 

    East-south-east 

  Parameter in the vector   determining the logistic function        

  Parameter in the vector   determining the logistic function        

  Number of data points, North 

    North-north-east 

    North-north-west 

  Atmospheric pressure (Pa) 

     Reference atmospheric pressure (Pa) 

  Power output (W) 

 ̂ Expected power (W) 

   Normalized power (W) 

  Gas constant (J/K kg), Rotor radius (m) 

  South 

    South-south-east, sum of squared errors (kW
2
) 

        Total sum of squared errors for all four wind directions (kW
2
) 

    South-south-west 

  Air temperature (K) 

     Reference temperature (K) 

     Turbulence intensity 

  Wind speed (m/s) 

   Normalized wind speed (m/s) 

   Wind speed at reference height (m/s) 

  West 

    West-north-west 

    West-south-west 

  Independent variable, wind speed (m/s) 



 

  Dependent variable, power (W), energy (MWh) 

 ̂   Expected value of the dependent variable for the independent variable    

  Height above ground level (m) 

   Reference height (m) 

 

Greek letters 

  Wind-shear power law exponent 

  Standard error (kW) 

     Weighted standard error for all wind directions (kW) 

  Deviation in power from reference line (kW) 

  Tip speed ratio 

  Density of air, 10 minute averaged air density (kg/m
3
) 

     Reference air density for normalization (kg/m
3
) 

  Standard deviation of the power (kW) 

   Standard deviation of wind speed variations (m/s) 

  Parameter in the vector   determining the logistic function        

  Rotational speed of the wind-turbine rotor (rad/s) 

  Vector parameter determining the shape of a logistic function 

 

Indices 

  Index of data point 

  Index of bin 

  Index representing wind direction 
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1 Introduction 

The wind power production is growing significantly and the importance of an 

efficient generation increases since unpredicted losses in production can cause 

substantial economic consequences. The development of multiple megawatt turbines 

placed in remote locations also requires better ways to control and monitor the 

performance of the turbines to optimize maintenance and production. The 

optimization of power output is complicated by the fact that it is a multiple-input, 

single-output signal. If the power production of the turbines can be supervised on 

distance, better control and optimization will be possible. Thereby, reductions in 

production, which might indicate a deteriorated condition of wind-turbine 

components, can be detected earlier and measures can be taken before any serious 

failure occurs. The economical revenue of this is increasing while the rated power of 

the turbines is increasing. 

 

1.1 Problem description 

Göteborg Energi, is planning for a reinforcement of wind power within the next years. 

The objective is to set up 100 new turbines until 2015 and to supply 500 GWh of wind 

energy in 2015. Therefore, there is a need to find an effective way to measure and 

monitor the performance of the wind turbines. A couple of years ago, a software for 

monitoring and quality control of district heating was developed by Göteborg Energi. 

The purpose of this software, named Kasper, was to ensure the quality of the 

measurements of district heating deliveries and to detect faulty measures. The 

software monitors the energy signature, that is the energy supplied to buildings versus 

outdoor temperatures, and compares the hourly average values with a reference 

signature. The system has been proven to be very efficient and reliable. It is therefore 

desirable to develop and adapt this system to be applied to wind power installations as 

well.  

Currently, Göteborg Energi has eleven wind turbines running within the area of 

Göteborg. Five of these are situated at Risholmen, four are Vestas V44 and have a 

capacity of 600 kW each, and the last one is a Bonus Mk3 with rated power of 

450 kW. The study has been focused on the four Vestas turbines, as the available data 

on those were most comprehensive and the fact that they have been operating during a 

longer period. Today, there is no effective performance-monitoring system for those 

and information concerning their production has to be gathered from different 

sources. A new monitoring system will also support the monthly evaluations of the 

production of the turbines as no such tool exists today.  

A so called power curve is usually supplied by the turbine manufacturer. It shows how 

the specified type of turbine shall generate power under specified conditions in ideal 

terrain. This curve works as a reference of the performance from the manufacturer but 

as the terrain is barely ever ideal, its usefulness is limited in practice. It is therefore 

desirable to have an accurate turbine- and location specific reference signature 

representing the historic performance, to which the present performance can be 

compared. 
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1.2 Previous work 

The first version of Kasper for district heating was developed in 2006 as a master 

thesis in statistical mathematics on behalf of Göteborg Energi. It was found that 

piecewise linear regression should be used to represent the reference signature 

(Munoz, 2006). The work contains a statistical analysis of data for the energy 

consumptions of 90 buildings in Göteborg from May 2004 to May 2005. The thesis 

also contains an error detection method where alarms are initiated if the deviation 

from the reference line is higher than 3.5 standard deviations of the data used for the 

reference. Based on the results from the thesis, a Java application was implemented.  

During autumn 2009 and spring 2010, a second thesis was conducted, aiming to 

improve the current application Kasper. The result became a version of Kasper where 

the total difference between the actual supply of district heat and the expected demand 

during a longer period can be calculated (Lindqvist, 2010). The application makes it 

possible to evaluate energy saving actions and the energy efficiency of buildings.  

 

1.3 Purpose 

The purpose of the master’s thesis is to develop the basis of an application for analysis 

and monitoring of wind power production. The system Kasper will be developed and 

adapted to handle energy signatures of wind turbines. With the application, it shall be 

possible to detect sudden performance degradations and short-term deviations e.g. due 

to measurement errors and signal faults. Also long-term changes and trends of the 

production shall be detected with the system. This is done through detection of 

deviations from a reference energy signature of the turbine. With these functions, the 

system can be used as an Early-Warning System and the information obtained will 

provide decision support concerning maintenance. It can also be used for evaluation 

of optimization trials e.g. regarding control functions. 

 

1.4 Scope and objectives 

Within the scope of the work is to identify the parameters influencing the wind power 

production. Those parameters shall be used when alternative methods for 

parameterization of historical data are developed. In order to enable detection of 

deviating data, procedures which are compatible with the parameterization methods, 

shall be developed. The methods and alarm procedures are combined to models were 

the wind power production from one period can be evaluated and compared with a 

reference period. For construction and testing of the models, Matlab is used.  

The study is limited to data available at Göteborg Energi. Due to difficulties of 

obtaining valid data, the data used in the models is mainly limited to two periods of 

time, June 2008 to March 2009 and May 2010 to October 2010. 

The study is focused on identifying a suitable model and algorithm for a monitoring 

and evaluation system which can be used at Göteborg Energi. The software 

implementation of the system is out of the scope of the work. As a result of the work, 

a recommendation to Göteborg Energi is given with respect to the possibilities of 

applying the existing system for district heating to wind power with only minor 

modifications in order to facilitate the implementation. 
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2 Background 

The energy which can be extracted from a wind turbine is dependent on the wind 

speed. A basic introduction to the governing equations is given in section 2.1.  

During the last years several different systems for monitoring and control of wind 

power performance have been developed, which are described in section 2.2. Many of 

those are based on mathematical models and are using large amounts of data for 

prediction of wind power production. 

 

2.1 Theory 

The power production of a wind turbine is theoretically determined by  

  
 

 
     

  (2.1) 

where   is the density of the air,   is the rotor swept area,    is the power coefficient, 

(the ratio between the power output of the wind turbine and the power available in the 

wind, and v is the speed of the incoming air flow. From (2.1) it can be seen that the 

power output is a function of the cube of the wind speed, therefore, a doubled wind 

speed will lead to eight times higher power production. The power is directly 

proportional to the density of the air. The density is a function of air temperature and 

atmospheric pressure according to  

       (2.2) 

where   is the atmospheric pressure,   is the gas constant for dry atmospheric air, 287 

J/K kg, and   is the temperature of air in K. This implies that the density will vary 

according to the local and temporal atmospheric conditions and thus also affect the 

power output from the turbine.  

The value of     varies with the wind speed which implies that the power curve of a 

turbine is not just a function of the cubic wind speed. The power coefficient is 

dependent on the so called tip speed ratio, λ, given by  

  
  

 
 (2.3) 

where   is the rotational speed in rad/s and R is the radius of the rotor. With a fixed 

rotational speed of the rotor, λ will vary which leads to that also    will vary. The 

maximum value of    is usually around 0.45 while a theoretical limit of 16/27 (≈0.59) 

is determined by Betz’s Law. At high wind speeds, around 18 m/s, the coefficient is 

approximately around 0.1. At these wind speeds, the wind turbine is extracting its 

rated power and the turbine is regulated to not extract more. In Figure 2.1 it can be 

seen that the Vestas V44 reaches its rated power of 600 kW at a wind speed of 16 m/s, 

hence called rated speed. The figure also shows that the power coefficient reaches its 

maximum of 0.43 at a wind speed of 8 m/s. All turbines, irrespective of size, have a 

cut-in speed and cut-out speed which are the limits at which the turbine will start 

generation and the wind speed at which the turbine is shut down. For a Vestas V44, 

the cut-in wind speed is 4 m/s, meaning that the turbine will start to generate 

electricity when the wind speed exceeds 4 m/s. It is interesting to note that, however, 

when the turbine is operating and the wind speed decreases, the turbine will stop 

generating at 3 m/s. Cut-out speed for the same turbine is 25 m/s. 
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Figure 2.1 Power curve (blue line) and the power coefficient (red line) for Vestas V44-600 kW 

 

2.2 Existing systems for wind turbine monitoring 

Currently, there are several different systems on the market for monitoring wind 

turbines operation, condition monitoring systems (CMS). Most of these systems are 

based on vibrational analysis and thus use vibrations as an indicator of condition. 

The main part to consider for condition monitoring systems (CMS) is the drive train: 

The gearbox consisting of several critical components such as bearings and gears, the 

main shaft, the main bearing and the generator (Nilsson & Bertling, 2007). SKF’s 

condition monitoring system, WindCon, is based on vibrational analysis. Other 

techniques which can be used for condition monitoring are oil analysis, thermography, 

physical condition of materials, strain measurement, acoustic measurement, electrical 

effects, process parameters, visual inspections and performance monitoring. These 

techniques allow the maintenance strategy called condition based maintenance (CBM) 

to be applied on the turbines. This strategy implies that maintenance shall be 

conducted before a fault occurs as the CMS shall make it possible to predict 

impending faults.  

Since the trend goes towards larger turbines being installed in more remote areas, the 

cost for maintenance actions is increasing. The most cost-effective strategy for 

maintenance differs for different components within the turbine. CBM has been 

proven to be effective and cost efficient for components such as gears and bearings 

(Andrawus, et al., 2009, Besnard & Bertling, 2010) Research has shown that this 

strategy can optimize the maintenance for a whole wind farm and thereby, the cost of 

maintenance can be reduced significantly (Tian et. al., 2011). A large project, 

―Advanced maintenance and repair for offshore wind farms using fault prediction and 

condition monitoring techniques‖, co-ordinated by ITES (2005) advocates that the 

condition-based maintenance is most beneficial for offshore wind turbines. 

Other strategies that can be applied are time-based strategy, implying that 

maintenance is carried out at a predetermined time, and run-to-failure strategy 

(Nielsen & Sørensen, 2010). Those strategies can be more appropriate or more cost 
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effective for some components within the turbine, e.g. in cases in which it is hard to 

predict an impending fault. 

For monitoring of wind turbine performance, SCADA (Supervisory Control And Data 

Acquisition) system is used. This is used as a complement to CMS, which only 

provide monitoring of technical component condition and not of the turbine 

performance. SCADA systems have during a longer period been a vital part for the 

control system of wind turbine. These systems have during more recent times been 

developed to collect, monitor and log much larger amounts of data. This has improved 

the monitoring systems significantly. All large turbines that are being installed 

nowadays have sensors used to obtain large amounts SCADA data. The system is 

aiming to control and monitor the entire process and the number of parameters 

measured is usually more than fifty for each wind turbine. Parameters of interest in 

particular, in addition to the wind speed and active power, are usually bearing 

temperatures in the gearbox, gear oil temperature and temperature in the generator 

windings. The sampling frequency is usually 1 Hz but most SCADA systems store 

only 10-minute averaged values. 

Göteborg Energi uses CMS for some of their turbines and some of the turbines at 

Risholmen are equipped with WindCon for vibrational analysis. Larger, more recently 

installed turbines all have CMS and are supervised through it. The turbine in Gårdsten 

in the northeast part of Göteborg is equipped with a CMS and selected data from this 

turbine is obtained via the manufacturer’s web. Other turbines owned by Göteborg 

Energi, for instance the recently installed (2011-05-22) turbines at Töftedalsfjället in 

Dalsland also have CMS and these are being supervised by external staff at a remote 

monitoring center. SCADA data and CMS data  from these turbines can currently be 

obtained through the web and by Vattenfall. There are plans for integrating the data 

from these turbines into the operation management system at Göteborg Energi so that 

also the performance of these turbines can be monitored  in the Kasper application 

under development The remaining turbines owned by Göteborg energi can be 

performance monitored when connected to the server of the manufacturer, or for some 

turbines, when connected to Vattenfall’s web server. 

 

2.3 Mathematical models 

The power curve of a wind turbine can be described by different mathematical 

models. In a study by Kusiak et. al (2009), three different models were compared; two 

parametric models and one non-parametric. The study showed that a least-squares 

parametric model and a non–parametric model based on a k-nearest neighbour (k-nn) 

algorithm gave the best result. The least squares method is often used for regression 

and data fitting and minimizes the sum of the squared errors, e.g. the squares of the 

deviations from the parameterized curve, Eq. (2.4). The data set,         , 
            , … ,        , consist of   data points where   is the independent 

variable and   is the dependent variable, in this case the wind speed and the power 

respectively. The sum of the squared errors is calculated by 

∑             
  

       (2.4) 

where         is the function of the curve searched and   is the vector containing the 

parameters determining the curve. A logistic function was used to approximate the 

curve: 
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           (2.5) 

In this equation,   denotes the wind speed measured at the turbine nacelle top,   is the 

power generated and             is a vector parameter of the logistic function 

determining the shape. 

In the k-nn model, the wind speed is used as a predictor and the power is used as a 

dependent variable. A residual control is used to eliminate residuals and thereby 

achieve a more accurate model. The models were designed from a test set of data 

from one period of time. The models were then compared with another set of data 

points and the result was satisfying and the models could be used as reference power 

curves for online monitoring. 

Another method which is commonly used for data fitting is the maximum likelihood 

method (MLM). For the MLM, a known probability distribution function is used to 

find the parameters which maximize the probability (likelihood) of the measured data. 

For wind speed, the Weibull distribution is often used as this distribution has been 

proven to match the wind data well (Seguro & Lambert, 2000).  

To construct a reliable model from data, automatic filtering of the data will be needed 

to eliminate erroneous data and thereby prevent their influences on the result. Sainz et. 

al (2009) propose a statistical technique of the least median squares combined with a 

random search to detect and reject erroneous data points. The least median square 

method is less sensitive to outliers than the least squares method as a single outlier can 

destroy the fitting using the least square method. The least median square method was 

applied to raw data and after filtering, a reference power curve could be constructed 

using an exponential model which yielded satisfying results. The exponential model 

took wind speed, wind direction and air temperature into consideration and was 

shown to work well throughout the whole range of wind speeds. 

Another method investigated by Sainz et. al (2009), ―the method of bins‖, is also 

working well, at least as far as there is sufficient data, covering the whole wind speed 

range. An advantage of this model is that the level of rejection of data can be adjusted 

easily, and thereby assure that no correct data will be rejected. With the above 

mentioned least median square method proposed by Sainz et. al. (2009), the rejection 

of data might be extensive. ―The method of bins‖ is also described in the IEC 61400-

12 standard ―Power Performance Measurements of Electricity Producing Wind 

Turbines” (IEC, 2005) for construction of a power curve for a wind turbine: The wind 

speed range is split up into bins of 0.5 m/s for wind speed between 0 m/s and the cut-

out speed. For each bin j, the average of the normalized wind speed is calculated 

using: 

     
 

  
∑       

  

   
    

 (2.6) 

The normalized wind speed is the measured wind speed recalculated for a reference 

air density. The normalization procedure is described in Section 4.4 of this thesis. The 

average power and the standard deviation of the power in each bin are calculated 

according to  

   
 

  
∑     

  

   
,      (2.7) 
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   √
 

  
∑          

   

   
   (2.8) 

where      is the normalized and averaged wind speed in bin  ,         is the normalized 

wind speed of data point   in bin  ,    is the number of data point in bin  ,    is the 

averaged power output in bin  ,       is the power of data point   in bin   and    is the 

standard deviation of the power output in bin  . 

Data sets deviating more than e.g.     can be rejected and by repeating the procedure, 

recalculating    ,    and    the accuracy can be increased. The averaged values can 

then be used to create a power curve. 

Catmull (2011) proposed to use SCADA data for the construction of Artificial Neural 

Networks (ANN) which then can be used for prognosis of component health 

condition. ANN is a nonlinear mapping system for identifying patterns in large 

amounts of data. From the study of Catmull (2011) it was concluded that this is one of 

the best methods so far for prediction of power from a wind turbine under certain 

conditions. The Kohonen Self-Organizing Map (SOM), which is an unsupervised 

learning ANN, can successfully be applied to SCADA data to detect an impending 

failure although it cannot provide information about the type and location of the 

problem (Catmull, 2011). The distance between the SOM and the point in space 

described by the state of the turbine is used as an overall condition indicator. An 

increasing distance indicates an impending fault. 
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3 Current system at Göteborg Energi 

Göteborg Energi have developed a system for control and monitoring of district 

heating. Preceding the project described here, no dedicated system for monitoring of 

wind power existed at Göteborg Energi and the monitoring was considered 

complicated and insufficient. 

 

3.1 Kasper 

The primary purpose of the tool Kasper was to ensure the quality of the measurements 

of the deliveries of district heating, which previously had been deficient. With the 

program it is possible to identify faults and measurement errors. Since the start up, the 

program has made it possible to debit costumers afterwards when they had been 

paying for less than actually delivered, due to faulty measurements. Previously, it was 

not possible to debit afterwards and this led to losses of revenues where the measured 

consumed energy was lower than the actually supplied as the measurement error 

could not be detected.  

The system creates energy signatures, one signature for a reference period where the 

measures are assumed to be correct and another energy signature for a period to be 

studied. The energy signature links a certain daily averaged temperature to a certain 

energy demand for a building by using historical data. The reference period is usually 

one year in order to cover the whole temperature range. A new energy signature can 

be created for another period and the periods can thereby be compared even though 

the temperature is diverging between the periods. From the data of daily heat 

deliveries (MWh) and data of daily averaged temperature (⁰C), a regression line is 

determined, creating the energy signature. Figure 3.1 is showing the energy signatures 

of an example building, one for the reference period (light blue) and the other for a 

more recent period (dark blue). The horizontal axis is showing the temperature (⁰C) 

and the vertical axis is showing the daily deliveries of heat. The energy signatures 

consist of four linear regression lines, calculated using the least square method. The 

positions of the four knots on the horizontal axis are predetermined and are the same 

for all buildings.  

Each night, meter readings for delivered energy of district heating and daily averaged 

temperature for all properties within the district heating network are collected. Those 

values are compared to the reference signature and its expected delivery of district 

heating for the current temperature. The heat demand can differ significantly between 

different days since activity in the building might be different e.g. in an industrial 

building or school where the demand is reduced during the weekends. Due to this, 

Kasper can handle up to three different reference signatures and three different 

signatures of a studied period. Each value is compared with the closest energy 

signature. 

There are two different kinds of alarm functions within the system: point deviation 

alarm and sliding alarm.  

A point deviation alarm will be initiated when the difference, between the measured 

value,  , and the expected value  ̂  
for the actual temperature    , exceeds a certain 

deviation 

   ( ̂  
   )           (2.9) 
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where   is the standard deviation determined in the context of reference-signature 

calculation. The magnitude and the number of alarms during the last 90 days are 

counted by the system. The properties can be ranked according to the magnitude of 

the deviations measured during the last day or according to the number of alarms for a 

property during the last 90 days. In order to not ignore smaller properties, with a 

relatively low heat demand, the deviations can also be normalized against the 

reference value and ranked according to this. 

The sliding alarm identifies deviations in the energy signature over the last 365 days 

compared to the energy signature of the reference period. Those deviations can be 

ranked according to the total deviation of energy deliveries during the period or by the 

rate at which the signature is changing. The worst alarms will be handled and 

investigated first. The deviations of signature might be caused by changes in the use 

of the building e.g. if the building has not been in use during a period. In cases when 

the changes cannot be explained with the use of the building, it is likely that 

something is wrong with the gauge and that more, alternatively less, heat has been 

delivered than what the meter has recorded. The meter is then replaced and the old 

one is sent to a laboratory where its accuracy can be controlled. If the meter has 

registered too low values of supplied heat during a longer period, Göteborg Energi 

can debit the costumer afterwards. The amount of supplied heat that has not been 

charged for can be estimated by the software through comparing the measured values 

to the reference line. 

 

Figure 3.1 Graph of supplied energy at different temperatures for a certain building obtained 

with Kasper. Dark blue dots are measured values from the last year. The dark blue line is the 

regression line resulting from the data points, the line of light blue dots is the reference line 

obtained from historic data. 

 

3.2 Available data for wind power generation 

Many wind turbines owned by Göteborg Energi are today supervised by the turbine 

manufacturer or external staff. Operational data for these can be monitored from the 

manufacturer’s server but has not been available for analysis in this study. Instead 

data from four wind turbines, all of them of the type Vestas V44, have been used for 
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analysis. These are all placed at Risholmen in the western part of Göteborg. Figure 3.2 

shows a map of this area. The turbines are named with Swedish names, Boel, Eivind 

Elida and Elin. Göteborg Energi owns a fifth turbine at Risholmen, Marta. This is a 

Bonus Mk 3 turbine with lower capacity, 450 kW instead of 600 kW and another 

control strategy, stall regulation instead of pitch regulation. The stall regulation 

strategy prevents the same method of normalization to be used and since all newer 

turbines are pitch regulated, the developed model has not been adapted to this control 

strategy. 

Data for the wind power production of the four turbines is collected every second. 

From these data, minute average and hourly averages are created. All data, including 

the momentary values, are long-term stored in a server. A selected part of data is also 

available through an operational management system; momentary values from every 

ten minute from the two last weeks and hourly average from the start-up of 

measurements are available and can be presented in time history plots. The parameters 

available for each turbine are presented in Table 3.1. The wind speed for each turbine 

is measured by means of the anemometer on top of the nacelle, thus behind the rotor. 

Also the wind direction is measured at each wind turbine in order to enable yaw-angle 

control but currently, the signal is not stored. Instead data of wind direction measured 

at a wind mast located close to the turbines has to be used, ―Measuring point‖ in 

Figure 3.2. Since the rotor is affecting the wind speed, it may be assumed that it is 

advantageous to use the wind direction measured at the measuring mast. This is also 

the case for wind speed. The wind speed downstream the rotor is always lower than 

upstream the rotor when the turbine is operating since energy is extracted from the 

wind over the rotor. Other parameters of interest, where no data measured at the 

nacelle have been available, are the air temperature and the atmospheric pressure. It 

can be assumed that the temperature and pressure will not vary significantly locally 

within the area of the five turbines, thus, ambient temperature and atmospheric 

pressure data collected at Rya heat plant located 5 km east of Risholmen has been 

used in this work. 

During the investigation of data, it was found that the average values of wind 

direction had been derived incorrectly. Due to this, new values for minute average and 

hourly average had to be recalculated from the momentary values in order to make it 

possible to use the direction data. Measurement series for the pitch angles were found 

but it was concluded that these values were incorrect as they were just a fraction of 

the power produced and took unreasonable values. These series could therefore not be 

used for any analysis. Göteborg Energi is now aware of the problem and will measure 

and store the correct values in the future. 

The five turbines considered in the study started to operate in 1996. However, data is 

not available until July 2008 for Boel and Eivind and until November 2008 for Elida, 

Elin and Marta.   
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Table 3.1 Data available for the wind turbines at Risholmen, Göteborg. 

 Boel Eivind Elida Elin Marta Wind mast Rya HP 

Power X X X X X - - 

Wind speed X X X X X X - 

Wind direction - - - - - X - 

Generator temp. X X X X X - - 

Gear bearing temp. X X X X X - - 

Gear oil temp X X X X X - - 

Pitch angle - - - - - - - 

Air temperature - - - - - - X 

Air pressure - - - - - - X 

 

 

Figure 3.2 Map of Risholmen showing the location and names of the wind turbines and the wind 

mast included in the study. 
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4 Identification of influencing parameters 

The analysis of influencing parameters was performed using data from the database at 

Göteborg Energi. A literature review of the field was also conducted in cases where 

the available data was insufficient, and in order to support the conducted analysis. 

The wind turbine should ideally be placed on a site without local topographic features 

and obstacles which can affect measurements. In other case, which is the case at 

Risholmen and most other sites, site calibration is needed. The criteria for this are 

stated in the IEC standard (2005) for wind power performance. Series for wind speed, 

wind direction, atmospheric pressure, air temperature and power output shall be 

measured. 

 

4.1 Wind speed 

As the power output is a function of the cube of the wind speed, this is the most 

important parameter determining the power. In Figure 2.1, the ideal power curve of a 

Vestas V44 provided by the manufacturer has been shown.  

For obtaining correct measurements of wind speeds, the anemometer shall be placed 

between 2 and 4 rotor diameters from the turbine and it must not be placed in the 

wake of the turbine (Burton et. al., 2001). These criteria are not fulfilled by the mast 

at Risholmen; the distance between the anemometer and the closest turbine to be 

investigated, Eivind, is 380 m and thereby significantly more than 4 rotor diameters 

(176 m).  

According to Cutler et al. (2011), an average of the measured wind speed at the 

nacelle and the wind speed at the mast gives the best fit to the power curve supplied 

by the manufacturer. Important when measuring wind speed for wind power purposes 

is that the measures are calibrated for the height of the nacelle since the wind speed 

will vary with the height above the sea. According to the IEC standard (2005), for test 

purposes and the elaboration of power curves, the wind speed shall be measured with 

a cup anemometer at a mast on the same height as the hub. Correction for height can 

in theory be done by taking into account wind shear (the increase of mean wind speed 

with height) by using the wind profile power law relation, 

    (
 

  
)
 

     (4.1) 

where   is the wind speed at height  ,    is the known wind speed at the reference 

height    and   is a empirically derived coefficient, which usually takes on values 

around 0.14, but varies dependent on the terrain (Burton et al., 2001). The importance 

of measuring at the right height is increasing when the surface roughness is high. The 

surface roughness is dependent on the topography of the surroundings and if 

obstacles, such as buildings, are present in the proximity. A high surface roughness 

causes a high wind shear which implies that the horizontal wind speed is reduced at 

ground level and the nominal, undisturbed, wind speed is reached higher in the 

atmospheric layer (Peña, 2009).  

Figure 4.1 shows the power generated by the turbines at Risholmen plotted against the 

wind speed measured at the wind mast. Figure 4.2 shows the power plotted against the 

wind speed measured at the nacelle of the turbines. When using data from the wind 

mast the deviations of the power are significantly higher. When data from the 
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anemometer on top of the nacelle is used, a clearer shape of the curve is obtained. An 

analysis of the winds speeds showed that the wind speed at the mast was significantly 

higher than at the nacelle for all the four turbines, approximately 30 % higher at the 

wind mast.  

 

Figure 4.1 Power generated plotted against wind speed measured at the wind mast. 

 

Figure 4.2 Power generated plotted against the wind speed measured at respectively turbine. 

 

4.2 Wind direction 

The wind direction range, measured from 0 – 360 degrees, was split up into twelve 

sectors as shown in Figure 4.3. The prevailing wind directions at the wind mast at 

Risholmen were found to be south-west and west (SSW, WSW and W, see Figure 

4.3). These three wind directions are all four times more frequent than northerly 

winds. This is not surprising as south-west is the prevailing wind direction in this part 

of Sweden in general (Wern & Bärring, 2009).  

Figure 4.4 shows that the rated power has not been obtained in all wind directions for 

Boel, e.g. north-north-east (NNE) where the highest measured power is about 
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500 kW. It can therefore be concluded that difficulties will occur when trying to 

parameterize the power curve for those directions, due to the lack of data. Rated 

power is mainly reached in south-westerly (SSW and WSW) and westerly (W) winds.  

From Figure 4.5 it can be concluded that the wind direction influences the power 

output for a certain wind speed. The directions that yield best power output are south-

south-west (SSW) and southeast, while north-westerly winds are least beneficial. This 

is displayed in the figure as the same wind speed yields a higher production for south-

south-westerly (SSW) winds compared to e.g. north-north-westerly (NNW) winds. Its 

power curve is therefore shifted to the left.  

 

 

Figure 4.3 Distribution of wind frequency over twelve sectors during June 2008 -March 2009. 
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Figure 4.4 Distribution of wind directions of measured power from Boel during June 2008 until 

March 2009. 

 

Figure 4.5 Power output for each wind direction from the wind turbine Boel. 
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4.3 Turbulence 

Turbulence is characterized by unstable flow in which local speed and pressure 

change unpredictably, in contrast to laminar flow. This gives rise to fast fluctuations 

in wind speed. These fluctuations in wind speed can be caused by either friction with 

the earth’s surface or by the impact of obstacles such as buildings or trees. 

Downstream of a wind turbine, a wake will always occur since some energy is 

extracted by the turbine (Burton et. al, 2001). In the wake, the turbulence is high and 

this is a major factor when planning wind farms. The turbines affect each other and 

the turbines behind the first row will face a lower wind speed with higher turbulence 

than the first row. Power losses due to wake effects in wind farms are on average 

10 % and the turbulence generated by wakes causes fatigue loads on the turbines and 

thus reduces their lifetime (Barthelmie, 2007). A distance of 2 – 4 rotor diameters 

between turbines is suggested as a minimum in wind farms in order to reduce these 

effects (Petersen & Madsen, 2004). This is sustained between all turbines at 

Risholmen, where the shortest distance between two turbines is 250 m, while the rotor 

diameter is 44 m. 

Turbulence is measured in turbulence intensity,   , and has a percentage value. 

          (4.2) 

Herein,    is the standard deviation of the momentary wind speed variations,   , at a 

specific location over a specified period of time,  

   √
 

 
∑         

      (4.3) 

where   is the mean velocity at the same location at the same period of time. In the 

ideal case of perfectly laminar flow, the value would be zero. The turbulence intensity 

may even be higher than 100 %. Typical values at hub-height onshore are 10-12 %, 

while offshore typical values are around 6-8 % (Barthelmie, 2007). 

Gusts and turbulence affect the power generation negatively since it causes large 

variations in loads at the turbine. The surface roughness is lowest over the sea, at least 

in absence of high waves. Due to this, the turbulence intensity for the turbines placed 

at the shore of Risholmen will vary around the turbine. To quantify the turbulence, 

momentary data at ms resolution is required. This has not been available and no 

investigations could be done to further analyse those effects. The turbulence intensity 

can be assumed to be relatively constant for a certain wind direction at a given wind 

speed (Burton et al., 2001). By having sufficiently narrow wind direction sectors, the 

turbulence effects preventing the construction of a normalized power curve can be 

eliminated since these effects are constant for each direction.  

 

4.4 Air density 

The density of a gas is determined by the ideal gas law. An equation for this relation 

was introduced in section 2.1, 

       (2.2) 

where   is the density of the gas,   is the pressure inPa,   is the gas constant for dry 

atmospheric air, 287 J/K kg, and   is the temperature of the gas in K. Hence, the 

density will decrease with an increasing temperature and rise with an increasing 
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pressure. This, in turn, implies that the power output is expected to be lower at higher 

temperatures as the power is a function of the density, see equation (2.1). In Figure 

4.6, power output is shown for different temperature intervals and it can be clearly 

seen that higher temperatures yield lower power output. At the lowest temperature 

during the period (-16.4⁰C), the density of the air is approximately 17 % higher than 

for the highest temperature during the period (29.0⁰C), and thus shall the power 

output be 17 % higher for the lower temperature at a certain wind speed. The data 

used for Figure 4.6 is hourly data from three years. 

The influence of the variations in atmospheric pressure, which is the other variable 

parameter in the gas law, was also investigated. The difference between the highest 

and the lowest pressure during the same period was 79.38 hPa. This corresponds to 

8 % higher density for the higher pressure and an expected increase in power output 

of approx. 8%. When power is plotted against wind speed for different pressure 

intervals, Figure 4.7, no correlation between higher pressure and higher power is 

found, confirming that the temperature variation has a greater influence on the power 

output than the pressure variation. 

At high temperatures, also the relative humidity affects the density of the air. The 

effects become significant at a temperature of around 30⁰C (IEC, 2005). The 

calculations for obtaining a density normalized regarding humidity as well are more 

complicated than the multiplicative correction necessary for temperature and pressure 

(IEC, 2005). It can be assumed that these effects can be neglected in Swedish climate 

as the temperature only exceeds 30⁰C a few times a year. 

The IEC standard (2005) is suggesting that for active power controlled turbines, a 

normalized wind speed shall be calculated according to  

     (
 

    
)
   

 (4.4) 

where    is the normalized wind speed,   is the averaged wind speed measured 

during 10 minutes,   is the averaged density calculated according to Eq. (4.4) for data 

measured during 10 minutes and      is the reference density. The measured power 

output can thereby be compared to its normalized wind speed.  

For stall regulated turbines, normalized power shall be calculated (IEC, 2005), by 

means of 

    
    

 
      (4.5) 

where   is the normalized power output and   is the averages power over 10 minutes. 

In Figure 4.8, the two ways of normalization, both normalized wind speed and 

normalized power, has been applied to data obtained at Boel, which is an active power 

controlled turbine. For simplicity reasons, reference condition was set to 10⁰C 

(283 K) and 1 bar (100,000 Pa). 

     
    

     
 

          

        ⁄       
  1.23 kg/m

3 
 (4.6) 

It was found that the normalization of wind speed resulted in a slightly narrower and 

more accurate curve then for normalized power, Figure 4.8. 
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Figure 4.6 Power output from the wind turbine Boel for different temperature intervals. 

 

 

Figure 4.7 Power output for different pressure intervals. 
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Figure 4.8 Power curves for measured power, normalized power and normalized wind speed. 
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5 Model development 

The objective is to develop a tool where data of the production from one period of 

time can be compared with a data model representing a reference signature. The 

reference signature shall be a power curve created from data obtained during a period 

when the turbine is assumed to have operated without any disturbances or faults. In 

order to make data comparable, selection and normalization of data are needed as 

described in Chapter 4.  

The data contain erroneous values due to e.g. gauge errors or data generated during 

start-up or shutting down of the turbine. Such values should not be included in the 

construction of the reference signature and therefore, a filtering method for the 

rejection of this data is needed. After the filtering and selection of data have taken 

place, a parameterization of data is carried out in order to obtain a reference signature. 

Three different methods for parameterization are investigated using Matlab. The data 

used when developing the methods was 10 minute average values. This data was 

created from minute average values, which in its turn was created from momentary 

values of 1 Hz. This is in line with IEC standard (2005) which states that the sampling 

rate has to be at least 1 Hz and that the data shall be presented as 10 minute averages. 

Alternative averaging periods of one minute and hour have been considered but were 

rejected as the amount of data would have become either too extensive or too small. It 

was also found that minute averages resulted in significant higher variation of power 

for each wind speed, which would aggravate the parameterization. 

To compare data from two different periods, a signature based on data from another 

period shall be constructed using the same method as for the reference. Thereby, long 

term trends can be identified and an evaluation of the performance can be conducted. 

The tool shall also include a function to detect data deviating from the reference 

signature. When this occurs, an alarm shall be initiated and hence, degradation of 

turbine performance can be detected. 

 

5.1 Model approach 

In Chapter 4, it was found that several variables affect the power generation. From 

these results, the following variables were chosen to be included in the model: 

 Wind speed 

 Power 

 Wind direction 

 Air temperature 

 Atmospheric pressure 

To get as high accuracy as possible, all relations found will be combined in order to 

give a narrow range of acceptable power output for a certain wind speed. 

IEC 61400-12 recommends using the wind speed measured at a wind mast but in 

Section 4.1 it was found that when the wind speed measured at the nacelle was used, 

the variations of power were significantly lower. Since the performance of the wind 

turbine will be compared to its own in the past, it is assumed to be of advantage to use 

the wind speed at the nacelle even though this is lower than the actual free stream 

wind speed at hub height. 
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It was found that the power output is different depending on wind direction. It was 

also found that high wind speeds are rare or even absent in some directions thus, for 

these directions a parameterization of the data cannot be fulfilled. Winds from the 

four sectors, S, SSW, WSW and W, were found to be the most frequent directions, 

more than half (54%) of the data was measured in these sectors. High wind speeds, 

and thus rated power, were also found in these sectors. Therefore, the models were 

designed to include data measured in these directions, creating separate signatures for 

the four directions. Due to the high frequency of these wind directions, it is 

considered sufficient to base the monitoring procedure on these directions only. An 

additional option, the monitoring based on data from all wind directions can be 

included in the application in order to visualize even the remaining directions. 

The data processing can be divided into the following steps: 

1. Validation to ensure that all variables exist for a given time 

2. Selection of wind directions to be included in the analysis 

3. Calculation of normalized wind speed,   , according to Eq. (4.6) 

 

5.2 Detection and rejection of erroneous data 

When looking at any of the figures showing the power versus wind speed, it is 

obvious that not all data should be included in the calculation of the reference 

signature. Only data representing normal operation should be included. There is data 

measured at high wind speed when the turbine has not been in operation, having a 

power output of zero. Such values will destroy attempts of creating an accurate 

reference signature using regression. As the values to be used are average values, the 

turbine may be in operation for a part of the time when a value is formed, and out of 

operation for the rest of the time period. This phenomenon is mainly present, and has 

effects, for wind speeds around the cut-out speed. In Figure 4.8, such data is found for 

wind speeds above the rated speed 16 m/s and is resulting in a power data lying 

between zero and the curve representing normal operation. 

The simplest method for rejection of erroneous values is based on the ―method of 

bins‖ which was outlined in Section 2.3. The method of bins was applied to data sets 

obtained after the data treatment outlined in Section 5.1. It was found, that an 

appropriate level for rejection was    , where    is the standard deviation of the power 

data in bin   according to Eq. (2.8). Two curves, one upper limit, Eq. (5.1), and one 

lower limit, Eq. (5.2), serving as rejection thresholds were created by interpolation of 

the bin mean power plus respectively minus,    , versus the bin averaged normalized 

wind speed,     : 

                      (5.1) 

                      (5.2) 

The suggested one-step filtering based on the method of bins appeared to be 

insufficient at high wind speeds where several data points are generated when the 

turbine only has been in operation for a part of the ten minutes period. The amount of 

data in each bin at high speed is limited, hence these erroneous values affect the 

average in the bin substantial and these points are not rejected even though they do 

not represent normal operation. To make sure that such data is rejected, an extra 

condition for rejection is included;  
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If                   and                          ) data shall be rejected. 

This corresponds to 16 m/s respectively 500 kW for Vestas V44.  

To further improve the data quality, the binning and filtration process is repeated for 

only that data which was accepted in the first filtration, using the same condition for 

rejection. The result after the whole filtering process of south-south-westerly winds is 

shown in Figure 5.1. In the figure, there is still one obvious erroneous data among the 

accepted values,     17.8 m/s,   520 kW. A third filtering would not have rejected 

this data as no data in this bin was rejected in the second filtering and hence, the alarm 

threshold would have remained the same after a third filtration. 

 

Figure 5.1 Accepted and rejected data after the iterative filtering process for data measured in 

SSW direction at Boel. 

 

5.3 Parameterization of the reference signature 

Three different methods have been investigated in order to create a suitable data 

model representing the reference signature: 

 Piecewise linear regression 

 Polynomial regression 

 Linear interpolation based on the method of bins 

In the current version of Kasper for district heating, the method used for the 

construction of the reference signature is piecewise linear regression, with three knots 

and four different lines. In order to reduce the modifications necessary for adaption to 

wind power, it would be beneficial if the same method could be used. Two different 

piecewise linear regressions, one with three knots and one including six knots, were 
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compared to the two other alternatives to determine the most appropriate method. All 

methods were implemented using Matlab. 

 

5.3.1 Piecewise linear regression – 4 pieces 

The method used for district heating was adapted to the wind power data extracted 

after accomplished filtration. The regression is found using least-squares 

approximation. The algorithms compute the slope of each line and also the location of 

each knot at the vertical-axis (power). The locations of the knots at the horizontal-axis 

(wind speed) are set beforehand. The algorithms are solving an equation system of 

four equations, each representing one of the regression lines. It was found that a 

choice of 3.5 m/s, 7 m/s, 12 m/s and the maximum    within the amount of data as 

locations of the knots provided the best model fit. These values were chosen to fit as 

much as possible of conceivable data and to minimize the sum of the total sum of 

squared error,       , for the four wind directions considered: 

                               with  (5.3) 

     ∑ (      ̂(       ))
  
   

 
    (5.4) 

wherein these equations,     denotes the measured power of data point   in wind 

direction  ,    is the number of data points in wind direction   and  ̂         is the 

expected value from the created regression line at    in data point   for wind direction 

 . For the data used to create the regression in Figure 5.2,       = 2,760,500 kW
2
. To 

further get an overall measure of the goodness of fit and to get a measure to analyze 

how well the knots are compatible with all wind directions, a weighed deviation 

measure,     , over all wind directions was calculated,  

     
 

               
                               (5.5) 

where    is a measure of deviation from the fitted curve of data measured in wind 

direction  , given by: 

   √
 

  
∑        ̂(      ) 

   

       (5.6) 

Weighting of      allows    of the most frequent wind direction to be most significant, 

hence the optimization reflects the total set of data.  

From the figure, it seems like the poorest regression appears in the interval between 

the two first knots, 3.5 and 7 m/s, where the power curve is strongly non-linear. In this 

region, linear regression is insufficient. This is also were much data is measured and 

thus affecting        most. 
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5.3.2 Piecewise linear regression – 7 pieces 

It was assumed that, by increasing the number of pieces in the piecewise linear 

regression, the regression would be improved, thus a reduced        and      would 

be achieved as well. With an increased number of pieces, the amount of data for each 

regression line is reduced; hence the sensitivity for erroneous data in the regression is 

increased. Shortage of data for each piece is another factor limiting the number of 

knots. It is desired that the same points for knots shall be compatible with all wind 

directions and for relatively small amounts of data. It was found that a number of 

seven pieces was most appropriate as it gives a satisfying approximation while it at 

the same time is compatible with smaller amounts of data. The algorithms for the four 

pieces linear regression were modified to generate a seven pieces, piecewise linear 

regression. Thereafter, the optimum location of the knots could be found using Eq. 

(5.3) and (5.5) as measures to compare different alternatives of knots. The results of 

the best alternatives found for knots are shown in Table 5.1. Figure 5.3 is showing 

piecewise linear regression of data from Boel with knots according to the third 

alternative in Table 5.1. 
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Figure 5.2 Four-lines piecewise linear regression of data obtained from Boel in southerly (S) 

winds measured between 2008-07-01 and 2009-03-15. Knots are set at 3.5, 7 and 12 m/s. 
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Table 5.1 Alternative locations of knots for a seven pieces linear regression. 

Knot 1 

(m/s)  

Knot 2 

(m/s) 

Knot 3 

(m/s) 

Knot 4 

(m/s) 

Knot 5 

(m/s) 

Knot 6 

(m/s) 
       (kW

2
)      

(kW) 

3.5 6 9.5 11.5 12.5 13.5 2,302,200 12.81 

3.5 5.5 9 11.5 12.5 13.5 2,380,000 12.66 

3.5 5 7 9 12 13.5 2,245,300 12.64 

 

 

Figure 5.3 Seven pieces, piecewise linear regression of data measured in southerly (S) winds at 

Boel between 2008-07-01 and 2009-03-15. 

 

The improvement compared to the four pieces regression, is mainly obvious in the 

regions 3 m/s-7 m/s and in the upper part of the curve. The reduction of        when 

using seven pieces instead of four is 515,200 kW
2
 (2,760,500 kW

2
-2,245,300 kW

2
). 

Also      is reduced, 12.64 kW compared with 14.13 kW when using four pieces 

regression. 

  

5.3.3 Polynomial regression 

Based on the form of the power curve, it was expected that one single third-order 

polynomial could fit the wind power data obtained for wind speeds in the non-
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below 3 m/s and above 13 m/s, do not need to be parameterized as the power in these 

regions are determined beforehand e.g. 0 kW and approximately 600 kW.  

The data used previously, July 2008 – January 2009 for wind turbine Boel, was used 

again and the filter and detection method was applied in the same manner. A least-

squares-based regression of the data was used to find the polynomial. The result is 

demonstrated in Figure 5.4. 

 

Figure 5.4 A polynomial of third order was used to parameterize the data obtained from Boel in 

southerly winds between July 2008 and March 2009. 
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Figure 5.5 Fourth order polynomial used for regression of wind power data measured at Boel 

between July 2008 and March 2009. 

 

The approximation turned out to be rather poor,         2,518,300 kW and 

     15.59 kW
2
. A trial using a fourth order polynomial instead was conducted; the 

result is shown in Figure 5.5. Both        and      were slightly reduced, 

        2,339,800 kW and      14.10 kW
2
. Even higher order polynomials were 

investigated, but the accuracy remained relatively constant and higher order 

polynomials were therefore rejected as alternatives for parameterization. 

 

5.3.4 Method of bins 

As suggested by the IEC standard (2005), the method of bins was used to 

parameterize the data in order to obtain a reference signature. After the filtering 

process, the bin average      and    could be calculated from Eq. (2.6) and (2.7) 

again. Linear interpolation of the obtained mean values resulted in the reference 

signature curve found in Figure 5.6. Using this method with a bin width of 1 m/s 

provided values of         2,233,200 kW
2
 and      12.62 kW. 

According to IEC standard the width of each bin shall be 0.5 m/s. A modified model 

was developed, striving to meet the standard. In order to interpolate, at least one set of 

data is necessary for each bin. For some bins at high winds speeds, data was missing 

in some of the considered directions, S and WSW. For these cases, the bin width of 

the neighbouring bins was increased in order to enable a reference signature. This will 

not affect the accuracy since, above the rated wind speed; the expected power is 

relatively constant and independent of wind speed. A slightly higher accuracy was 

reached,         2,164,500 kW
2
 and      12.40 kW.  
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Figure 5.6 Parameterization of data for Boel, using the method of bins with bins of 1 m/s each. 

Data is measured in southerly (S) winds from July 2008 until March 2009. 

 

Figure 5.7 Parameterization of data for Boel, using the method of bins with bins of 0.5 m/s each. 

Data is measured in southerly (S) winds from July 2008 until March 2009. 
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5.4 Generation of alarms 

In the application for district heating, several alarms can be initiated. Many of the 

alarm methods are based on point alarms, which detect points deviating more than 

     from the reference line. By counting the number of point alarms during the last 

90 days, or by calculating the total deviation in terms of energy of the point alarms, 

the detection of point deviations is an essential part of the system for controlling the 

district heat deliveries. A similar method for deviation detection used for the 

generation of alarms was therefore requested for wind power adaption as well. 

Depending on parameterization method, different detection methods can be used. 

Three main concepts were developed and applied to the parameterization methods, 

although some concepts are just compatible with one or two of the parameterizations. 

The three concepts developed were: 

1. Alarm limits based on   , constant limits along the curve 

2. Alarm limits based on piecewise  , piecewise limits  

3. Alarm limits based on method of bins 

For each new data   added to the system, the deviation    is calculated according to 

Eq. (5.7). This is done irrespective of concept to be used: 

         ̂             (5.7) 

Herein,      is the measured power of data set   in wind direction    and  ̂         is the 

power of the reference signature at wind speed    in wind direction  . The filtering 

process will not be applied to the new data as erroneous data shall be detected and 

alarmed. However, alarms generated for data measured during start-up or shutting 

down are not desired as these points may influence the regression of the new data 

considerably. Therefore, some of these data points can be rejected by applying the 

additional criteria used in the filtration of the reference data, which was outlined in 

Section 5.2: 

If                   and                          ) data is rejected. 

During the investigated period, no severe deterioration of the turbine occurred and 

therefore shall most of the data be considered as normal operation, hence just a few 

alarms are desired. To be able to compare the models and to analyse which model that 

is returning the most reasonable alarms, the thresholds were set to trigger some alarms 

even for the investigated data. If the accepted deviation is set too narrow, the number 

of alarm will be enormous which will thus prevent the possibilities to detect the really 

relevant deviations. The acceptable range shall neither be set too wide as this can 

prevent the detection of severe performance loss. A number of different levels of 

threshold were tested for each model. 

In addition to the point alarms for monitoring of performance changes, performance 

degradation can be detected by comparing the signature of the newer data with the 

reference signature. The new signature is derived using the same method as for the 

reference signature. By comparing the two signatures, long-term trends of 

performance can be evaluated. If the number of alarm is high during one period, it can 

be expected that its signature will diverge from the reference.  
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5.4.1 Constant limits along the curve 

In Kasper for district heating, the overall standard deviation along the entire range of 

temperature is used to define the limit for alarm generation. Aiming to resemble this, 

a similar alarm generation concept was developed for wind power. The developed 

concept is compatible with all parameterization methods. 

After the wind direction separation, the deviation    is calculated for all data. From 

the data used to derive the reference signature, the deviation measure    for each wind 

direction is calculated. An upper and lower limit for alarm initiating can thereby be 

determined as a multiple of   . An appropriate level was, after testing, determined to 

be 4 . The interval of accepted power, not causing an alarm, will thereby be constant 

along the whole wind speed range. The concept was applied to all of the three 

methods of parameterization. The same reference period and hence, also the same 

reference signatures, as in section 5.3 were used. The new data, added to the system 

was data from 2010-05-01 to 2010-10-01. In Figure 5.8, the concept is applied 

together with the piecewise linear regression method (4 pieces). The total number of 

alarms for the four wind directions became 25. Data points which generate alarms are 

marked with red in the figures and the limits for alarms are represented by the thin red 

lines. In Figure 5.9, the constant limit concept is applied together with the polynomial 

(3rd order) regression method.  

 

Figure 5.8 Piecewise linear regression (4 lines) with constant limit concept for alarm generation. 

The data displayed is measured in the SSW direction, May 2010 - October 2010. Data points 

outside of the upper and lower limit would cause an alarm. 
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Figure 5.9 Polynomial (3rd order) regression with constant limit concept for alarm initiating. The 

data displayed is measured in the SSW direction, May 2010 - October 2010. Data points outside 

of the upper and lower limit are considered as alarm. 

 

5.4.2 Piecewise limits 

In some parts of the wind speed range, the difference between the highest and lowest 

power in the historical data is just a few kW, while in other regions the difference is 

tenfold. For the piecewise linear regression, it is possible to define different regions. 

Hence, the deviation measure   can be calculated for each line. For regions with small 

differences, smaller deviations from the reference signature,   , will initiate an alarm 

and vice versa for regions with larger differences. It was found that the most 

appropriate level for alarm generation was 5 , for both the four pieces regression and 

seven pieces regression. When using four lines for regression, hence four levels of 

alarms, alarms occurred in the regions around the knots, where the level of alarms was 

changed, for instance around 3.5 m/s in Figure 5.10. Several of those should be 

considered as normal operation but if the level for alarm is increased, the acceptable 

range is too wide in regions with higher  . This problem was almost eliminated when 

the number of lines, and thus the number of different  , was increased to seven. 

2 4 6 8 10 12 14 16

-100

0

100

200

300

400

500

600

700

Normalized wind speed (m/s)

P
o
w

e
r 

(k
W

)

 

 
Normal operation

Alarmed data

Reference signature

Regression new data

Upper limit

Lower limit



 
33 

 

Figure 5.10 Piecewise linear regression (4 lines) with piecewise limits concept for alarm initiating 

with an alarm threshold of 5 . The data displayed is measured in the SSW direction, May 2010 - 

October 2010. 

 

5.4.3 Method of bins for alarms 

When the method of bins is used for parameterization of the curve, the standard 

deviation of each bin can be used for detection of alarms. The upper and the lower 

limit for alarm are created by interpolation of the values calculated by the principles 

in Eq. (4.1) and (4.2). For alarm initiating although, it was found that the level for 

alarms could be reduced to 2.5   when a bin width of 1 m/s is used. For bin width of 

0.5 m/s, the standard deviation of each bin is small and the level of alarms generation 

has to be at least 4   . In some regions,    is very small, especially below cut-in speed 

and above rated speed. Due to this, neither the upper nor the lower limit is visible for 

these regions in Figure 5.11. Alarms below cut-in speed are not of interest and can be 

neglected. 

For the reference period, it is expected that a period long enough to cover all wind 

speeds, in all directions will be used. It is likely that a shorter period of time, for 

instance a couple of months during the summer, is desired to be investigated and 

compared to the reference signature. In these cases, it is not certain that the amount of 

data will be enough if a bin width of 0.5 m/s is used. When the regression line of the 

new data is created, at least one set of data measured in each bin is needed. As 

mentioned in section 5.3.4, in order to prevent lack of data in bins at high wind 

speeds, the number of bins above rated power can be reduced to one since the 

expected power in this region is constant. To ensure that a regression line can be 

obtained also for shorter periods of time, it is suggested that the regression line of new 

data added to the system shall be build up by bins of 1 m/s. When regression lines of 
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data from May 2010 – October 2010 were constructed, it was necessary to use bins of 

1 m/s and all data for wind speeds above 16 m/s was collected in one common bin. To 

ensure a signature over the whole wind speed range, an extra data set had to be added 

for each wind direction,       20 m/s and     600 kW. Even though the bin width 

for the new data is 1 m/s, it can still be compared with the reference signature 

constructed from bins of 0.5 m/s.  

 

Figure 5.11 Method of bins for parameterization and method of bins for alarm generation with a 

threshold set to 2.5 . The bin width is 1 m/s for both the reference signature and for the 

regression of new data up to 16 m/s. The width is thereafter enlarged for the new data. The data 

displayed is measured in the SSW direction, May 2010 - October 2010. 
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6 Comparison of the different models  

The three different methods of parameterization presented in Section 5.3 were 

combined with the different concepts of alarm generation, resulting in ten different 

combinations of models. A survey of the results is found in Table 6.1. Diagrams of all 

the different combinations are found in Appendix 1. 

Table 6.1 Survey of results for the different models developed. 

Parameterization 

method  
     

(kW) 

       

(kW
2
) 

Alarm 

concept 

Alarm 

threshold 

Number 

of alarms 

Piecewise linear – 4 

lines 
14.13 2,760,500 

Constant δ 4δ 25 

Piecewise δ 4δ 84 

Piecewise δ 5δ 28 

Piecewise linear – 7 

lines 
12.64 2,245,300 

Constant δ 3δ 129 

Constant δ 4δ 31 

Piecewise δ 4δ 172 

Piecewise δ 5δ 67 

3rd order polynomial  15.59 2,518,300 

Constant δ 3δ 76 

Constant δ 4δ 11 

4th order polynomial 14.10 2,339,800 

Constant δ 3δ 81 

Constant δ 4δ 21 

Method of bins (1m/s) 12.62 2,233,200 

Constant δ 3δ 52 

Constant δ 4δ 21 

Method of 

bins (1 m/s) 

2.5σ 39 

Method of 

bins (1m/s) 

3σ 21 

Method of bins (0.5m/s) 12.40 2,164,500 

Constant δ 3δ 118 

Constant δ 4δ 29 

Method of 

bins (1m/s) 

4σ 19 
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6.1 Parameterization 

To quantify the accuracy of fit for the methods of parameterization for the historical 

data, two measures were introduced,      and       . From Table 6.1, it can be seen 

that the method of bins (0.5 m/s) resulted in the lowest      and       . The bin 

method is very sensitive when the amount of data is limited. Since data for all bins is 

necessary, the total amount of data has to be extensive to ensure that data from normal 

operation is measured in every bin. With just a few values in each bin, the sensitivity 

to erroneous values increases as the divergent data will affect the average strongly. 

Due to this, usage of bins of 0.5 m/s is not suitable for construction of signatures for 

periods less than approximately one year. With data from the five month between 

May 2010 and October 2010, it was not possible to obtain a parameterization. 

Although it can still be used to construct the reference signature which shall contain 

more data, but then combined with another method for parameterization of new data 

for instance; bins of 1 m/s. Method of bins with bin width of 1 m/s resulted in the 

second best fit. With this method, it is possible to use the same method for both the 

reference signature and for new data of a shorter period. Another advantage of the 

method of bins is its simplicity; the method is easy to understand and does not contain 

any advanced mathematical calculations as it is based on average values and linear 

interpolation. 

Except from the bin method, also piecewise linear regression with seven lines resulted 

in a high accuracy, just slightly poorer than by using bins of 1 m/s. This method is less 

sensitive to shortage of data as the intervals are increased. Because of the same 

reason, erroneous values will affect the parameterization less and it is easier to get a 

sufficiently good signature. The mathematics behind this method is more complex 

than the method of bins, although it is easily computed using Matlab.  

Piecewise linear regression with four pieces would imply the least efforts for adaption 

of the current application of district heating to wind power since the mathematical 

algorithms already exist. To extend the number of knots, and thus the number of lines, 

to better fit the wind power data, should not cause any major difficulties. 

 

6.2 Alarm generation concepts 

The ten different models in Table 6.1 returns highly diverging number of alarms. The 

number can be modified by adjusting the alarm factor. Some models resulted in 

substantial amounts of alarms in some wind directions while at the same time, nearly 

no alarms for another direction. In these cases, it is hard to determine an appropriate 

alarm factor. This phenomenon occurred for the model using the method of bins for 

parameterization and the constant limit concept for alarms. For southerly (S) winds, 

no alarms occurred, Figure 6.1. In westerly (W) winds the number of alarms became 

46, Figure 6.2. When looking at the figures, an alarm threshold of 2  for southerly 

winds seems more appropriate, as the acceptable range of power is much wider for 

southerly compared to the range for westerly winds. It can thereby be concluded that 

the deviation measure   for westerly winds during the reference period was 

considerably smaller than for southerly winds, 10.88 compared to 30.63 for southerly 

winds.  

A large amount of alarms, 73, was obtained when 4 piecewise linear regression was 

combined with the piecewise limits concept for alarms. Many of these alarms are 
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found around the knots as the acceptable limit in this point is not continuous. The 

alarm factor can be increased to reduce the number of alarms, but due to the rather 

poor parameterization, there will thereby be a risk that actual suspicious data will be 

considered as normal operation. 

Even though the number of alarms in some wind directions is substantial, the 

regression line of the new data coincides fairly well with the reference signature in 

most cases. In all models, a minor degradation of performance could be traced in 

SSW direction; this can be seen in Figure 5.10.  

 

Figure 6.1 Result of the method of bins for parameterization and constant limits concept for 

alarm generation, using data measured in direction S. With an alarm factor of 3, no alarm is 

initiated. 
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Figure 6.2 Method of bins for parameterization and constant limit concept for alarms of data 

measured in direction W. An alarm factor of 3 is used, resulting in 47 alarms 
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7 Analysis and discussion of alternative scenarios 

Four different scenarios were outlined in order to evaluate the models’ adaption 

possibilities to other turbines and other conditions. For other turbines, in other sites, 

data for temperature, atmospheric pressure or wind directions might be missing. It is 

therefore of interest to investigate if the models can be used under these 

circumstances. For a recently installed turbine, for which no historical data exists and 

a reference signature cannot be constructed, it is therefore of interest to find 

alternatives to reference signatures for new turbines. The investigated turbines at 

Risholmen, each with a capacity of 600 kW, are nowadays belonging to the smallest 

turbines in operation. New turbines being installed currently usually have a rated 

power above 1 MW. To make the developed system useful even in the future and for 

additional turbines, adaption to larger turbines were investigated. An evaluation of the 

filtering process and its effects on the models was performed. 

 

7.1 Lack of temperature and pressure data 

If data on temperature or pressure are missing at the site, normalized wind speed 

cannot be calculated. Instead, the measured wind speed which does not take into 

account the density of the air, has to be used. As can be expected, the deviation 

measure from the parameterized curve increased compared with when normalized 

data was used. This was the case for all methods. For instance, for un-normalized 

data, using piecewise linear regression (7 lines),       13.74, compared with 

      12.64 for normalized data. The level for initiation of alarm is thereby 

increased, in order to tolerate higher deviations. 

When the reference signature, obtained using normalized wind speed, was compared 

to the signature for the same period, using non-normalized wind speed, the signatures 

appeared to be almost identical. In Figure 7.1, piecewise linear regression method (7 

pieces), has been used to parameterize data, both normalized and non-normalized, 

measured from July 2008 to February 2009. During this period, the average 

temperature was 7⁰C; this is rather close to the temperature of 10°C which the wind 

speed has been normalized against. The effects of the normalization are therefore 

reduced as both temperatures above and below the average are represented during this 

period. When normalizing data measured in warmer periods, the signature is moved 

towards left and the opposite for colder periods. If data from e.g. a winter period, with 

an average temperature significantly lower than 10⁰C is analysed, one can expect the 

signature of the non-normalized wind speed to be above the one of normalized data. 

In Figure 7.2 data from October 2008 to February 2009 has been parameterized. The 

difference is small and barely visible in the figure. When analysing the data of the fit, 

it was found that the knots were slightly shifted upwards for the non-normalized data. 

From these results, it can be concluded that a sufficiently accurate parameterization 

can be obtained even without temperature and pressure data.  
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Figure 7.1 Piecewise linear regression (7 lines) of both data with normalized wind speed, and 

non-normalized wind speed. 

 

Figure 7.2 Polynomial (4th order) regression of both normalized data and non-normalized data 

measured during winter. 
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7.2 Lack of wind direction sensor 

If turbines are located in areas where no wind mast is present, data for wind direction 

will not be available. In section 4.2, it was found that the power output is 

differentiated between directions and grouping of data according to direction was 

therefore included in all models. It would still be desirable that the developed model 

can be used even when wind direction data is unavailable.  

The models were modified so all data, independent of the wind direction, was 

monitored in one figure. The filtering process remained the same. For all different 

methods, a parameterization could be achieved. The results are summarised in Table 

7.1. Both a third order and fourth order polynomial regression of the data are 

demonstrated in Figure 7.3. When looking at Figure 7.3, the dense curve of data is 

wider than the direction dependent curves, it was therefore expected that the standard 

error   for parameterizations independent of direction would be higher. When 

comparing Table 6.1 and Table 7.1, the opposite was found,   is reduced for all 

methods. The explanation to this is probably that the wider range of power data is 

compensated by a large data density around the mean power. The sum squared 

error,    , increases in all cases, mainly because these parameterizations contain 

more data sets. 
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Table 7.1 Results of parameterization for the models, in absence of wind direction data. 

Parameterization method        

Piecewise linear – 4 line 13.76 4,683,000 

Piecewise linear – 7 line 12.18 3,668,600 

3rd order polynomial  15.13 3,846,000 

4th order polynomial 14.61 3,587,000 

Method of bins (1m/s) 12.18 3,667,300 

Method of bins (0.5m/s) 12,03 3,577,200 

 

7.3 Lack of historical data 

During the first time of operation for a turbine, no historical data exists and therefore, 

no  reference signature can be constructed. The new incoming data however needs to 

be compared to a reference. If other turbines of the same type already exist in the 

vicinity, data from these should be the best alternative to be used as a preliminary 

reference signature. 

To see how the parameterized signatures of two turbines placed in the same area 

differ from each other, two signatures were created; one from data for Boel and one 

from data for Elin. Figure 7.4 shows that the performance of Elin was slightly better 

than for Boel at the same period of time. The difference is small and in this case, the 

signature from Boel could have been used as reference for Elin if no historical data for 

Elin would have been available. 
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Figure 7.4 Comparison of the signature of Boel and the signature of Elin based on data measured 

during the same period The method of bins (1 m/s) was used to parameterize data measured in 

southerly (S) winds. 

 

The turbine manufacturers usually supply a power curve, specifying a reference 

performance of the turbine. The curve supplied by Vestas for their V44 turbine is 

shown in Figure 2.1. It was assumed that such a curve could be used as an initial 

reference signature, when no other data is available. The power curve shall represent 

the power production of a turbine ideally located under certain standard condition, for 

instance air density   1.225 kg/m
3
. Ideal locations are rare and this requirement is in 

reality, most of the time, not fulfilled.  

Figure 7.5 is showing the manufacturer’s power curve and direction independent data 

from Boel which has been normalized to the standard air density   1.225 kg/m
3
. The 

curve from the measured data is higher than the manufacturer’s specification. The 

performance of Boel seems to be remarkable better than the specification but this is 

not the case. The difference is mainly caused by the fact that the specification is based 

on wind speed measured according to IEC 61400-12 standard. Hence higher wind 

speeds than measured at the nacelle. If the measured power of the new turbine can be 

plotted against the wind speed measured at wind mast nearby, the manufacturer’s 

power curve may be used as a preliminary reference signature. If only the wind speed 

measured at the nacelle is available, the manufacturer’s power curve cannot be used to 

detect deviations of performance since the difference between the wind speed 

measured at the nacelle and the wind speed measured at a wind mast is too large. 

The amount of data needed to get an accurate reference signature depends on the 

method used. Methods containing less separate intervals are least sensitive to the 
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amount of data. When methods with smaller intervals are used, more data is necessary 

to ensure that each interval is containing a sufficient amount of correct data. The 

period of time needed to construct a reference signature of measured data is also 

strongly dependent on during which period of time the data is measured. During the 

winter, the wind variations are larger and the probability to measure wind speed in all 

ranges is therefore increased during these months (Boverket, 2009). Hence, a 

signature can be obtained with less data. For the development of alarm concepts, data 

from May to the beginning of October was used; this appeared to result in some 

difficulties for southerly winds where data of high wind speeds were insufficient. To 

even obtain a signature using the bin method, one data point at rated power had to be 

added. If data measured e.g. between November and March, would have been used 

instead, this problem would probably not have occurred. If a reference signature is 

desired recently after taken into operation, the piecewise linear regression with four 

lines can be used. This method has been proven to work with a small amount of data.  

 

7.4 Filtering sensitivity 

The proposed filtering function is an easy way to reject occasional data which is 

caused by defect turbines, by meter reading errors or values measured during start-up 

or shutting down periods. For some models, the filtering is the process which requires 

most data because data in each bin is required. By improving the algorithms, it should 

be possible to solve the problem of missing data in occasional bins by interpolating of 

the neighbouring bins. 

For larger quantities of data, the filtering process is working satisfactory. The 

appropriate level for rejection was determined to 5  for both the first and second 
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Figure 7.5 Parameterized data from Boel compared to the power curve supplied by the 

manufacturer. 
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iteration. The second iteration is of less importance as the major part of rejection is 

done in first iteration. Several of the largest deviations are due to the shutting down 

and start up around cut-out speed, and these are rejected by the additional condition, 

not based on standard deviation. If the number of erroneous values within the data 

sample is increased, the second filtration’s usefulness will rise and it should therefore 

be retained. 

To analyse the consequences of the filtering, the deviation measure of the 

parameterization when the filtering process is left out was compared to the deviation 

measure when filtering is included in the model. The results are summarized in Table 

7.2. For all models, both deviation measure      and the sum of the squared errors 

       were increased. 

Regarding the polynomial regression, data below 3 m/s and above 13 m/s is excluded. 

This reduces the effects of the filtering and the increase of deviation when left out is 

therefore small. Figure 7.6 is showing how the limits for alarms and how the 

parameterization are affected by exclusion of filter. The number of alarms initiated by 

the models decreased for all models, except from when the method of bins (1 m/s) 

was used for both parameterization and alarm detection. It shall be noticed, that the 

number of data points which shall be alarmed is higher since also the new data 

generated during start up or shutting down at high wind speeds shall now be detected 

as alarms. These points were previously rejected. 
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Table 7.2 Results of parameterization if no filtering process is conducted on the data before 

parameterizations. 

Parameterization method       Increase              

Piecewise linear – 4 lines 20.96 48.3 % 6,261,400 

Piecewise linear – 7 lines 19,03 50.5 % 5,157,700 

3rd order polynomial 16.63 6.7 % 2,873,800 

4th order polynomial 16.04 13.8 % 3,251,200 

Method of bins (1m/s) 17.83 41.2 % 4,497,900 

Method of bins (0.5m/s) 17.72 42.9 % 4,403,300 
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Figure 7.6 Method of bins applied to data which has not been filtered. Method of bins is also used 
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8 Conclusions  

In order to find the best model for monitoring and detection of diverging data, three 

different methods for parameterization, namely piecewise linear regression, 

polynomial regression and linear interpolation based on the method of bins, were 

investigated. These were combined with three alternatives for alarm generation and 

resulted in ten different algorithms. The most appropriate model to be used depends 

on several different aspects and will be discussed in the following. 

 

8.1 The tool and method 

During the investigation of influencing parameters it was found that wind direction 

and air density affected the power output of the turbine. To eliminate the effect of 

varying air density, the wind speed used in the models was normalized according to 

the IEC standard (2005). Four of the most frequent wind directions were chosen to be 

monitored in the model namely; south (S), south-south-west (SSW), west-south-west 

(WSW) and west (W). 

Comparative analyses of the methods investigated showed that the use of linear 

interpolation together with the method of bins, with a bin width of 0.5 m/s, resulted in 

the lowest standard error      and also the lowest sum of squared errors       . This 

method was, however, also found to be the one that requires most data for 

parameterization, and its applicability is therefore reduced. An increased width of the 

bins does not raise the standard error considerably but it reduces the required amount 

of data and hence, its applicability increases.  

The application of four pieces linear regression for parameterization was found to be 

insufficient. When the number of pieces was increased to seven, the accuracy of the 

fit was improved significantly and became comparable with that derived by the 

method of bins. An advantage of the piecewise method is that the presently used 

district heating algorithms easily may be modified and elaborated to include seven 

pieces and to be applied for wind power monitoring. Thereby operational synergies 

may be gained with respect to support. Polynomial regression is not recommended as 

its ability to create a satisfying parameterization was found to be limited.  

Regarding concepts for alarms, the concepts based on differential alarm limits, i.e. the 

method of bins concept and piecewise standard error, was found to generate several 

incorrect alarms. In particular these occurred in regions of low  . For the piecewise 

limit concept, many alarms were also initiated in the knots, where the limits are 

discontinuous. These methods are also more sensitive to erroneous data and lack of 

data, than methods with constant limits based on   for all wind speeds. 

If the number of alarms is increasing during a period, this may indicate an impending 

fault. The system can thereby serve as an early warning system. When the amount of 

recorded data is large enough to be parameterized, the wind power generation can be 

evaluated by comparing the regression line from one period to the reference signature. 

Long-term trends, and possible performance degradations, may thereby be detectable 

and, in combination with diagnostic measures, be utilised for condition based 

maintenance. 

For decisions on which model to use, three important aspects have to be considered: 

 The accuracy of the parameterization 
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 The minimum amount of data needed to enable a reliable evaluation 

 The quality of available data. 

With high quality data, in terms of few measurement errors, a model with shorter 

intervals can be applied. Poor quality will prevent high accuracy of the 

parameterization and in such cases, the piecewise linear regression of four pieces may 

be sufficient. If it is desired that short periods, less than one year, shall be used for 

evaluation, it is necessary to use either piecewise linear regression or polynomial 

regression. Taken into account the aspects mentioned above and also the 

implementation aspect, the recommendation to Göteborg Energi will be to apply the 

piecewise linear regression, with 7 pieces, combined with the constant limit concept 

for generation of alarms. 

The developed filtering process requires data in each bin. Even if the model may work 

with a limited amount of data, the filter’s data requirement may introduce a limitation. 

If data is missing in some bins, the filtering process can be excluded to enable a 

parameterization using for instance piecewise linear regression. However, it is 

desirable that the reference period shall be long enough to cover all wind speeds and 

hence, this problem is eliminated. 

Test analyses conducted without wind direction, temperature and air pressure data 

indicated that the models will generate reasonably accurate parameterization results 

and alarms also in case of lacking temperature and pressure data. 

 

8.2 Future work 

The data used for development of the models was mainly restricted to one turbine. To 

get a general analysis, the model should be tested with data from other turbines. The 

adaption possibilities to larger turbines should also be investigated as it is expected 

that larger turbines will dominate the wind power production in the future. With more 

data available, it will also be possible to investigate if data from one turbine can be 

utilised for modelling a reference signature for another turbine for which reference 

data is missing. The data investigated is generated during periods of normal operation, 

to better analyse the models, and especially the alarm concepts and the alarm 

thresholds, data representing deterioration should be tested. 

For the investigated turbines, the number of measurement series is low compared with 

more recently installed turbines. With more data series available e.g. turbulence 

intensity, influences of other parameters can be investigated, and hence the model 

may be further refined. 

In Kasper for district heating, methods for calculation of energy are implemented. 

These methods make it possible to quantify the total deviation in terms of 

energy (MWh) for a specific time period. A similar method for wind power could be 

developed as well. The consequences of performance degradation can thereby be 

quantified in terms of reduced electricity production and loss of revenues. 

There are several functions not included in this thesis which have to be developed 

before Wind-Kasper can be taken in to operation. One essential part is to develop the 

data handling. Currently, pre-processing of the data is needed before it can be used in 

the models. Methods to automatically detect the most severe alarms should also be 

developed in order to facilitate the performance investigations. 
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