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ABSTRACT 

Individual ICE (Internal Combustion Engine) driven vehicles are essential components 
of life in nations across the world. However, volatility in petroleum prices, security 
concerns associated with imported oil and anthropogenic climate change contribute to 
increasing interest in alternative vehicle technologies that are more efficient than 
„traditional‟ car concepts. 

For a number of advantages they offer, PEVs (Plug-In Electric Vehicles) are taking 
center stage in the current developments to resolve impacts of ICEs in the 
transportation industry. If this paradigm shifts from conventional oil fueled to grid 
supplied transportation is to take place, there will be a significant challenges and 
opportunities waiting for both automobile industries, oil industries and power supply 
industries. The goal of this thesis is therefore to develop probabilistic models that can 
quantify charging patterns of PEVs to allow utilities to evaluate their increasing charging 
impacts on the power systems. 

The heart of this diploma work can be split into two parts. The first is the probabilistic 
models themselves. Given any power systems of study, the outputs from these models 
can be used with base load profiles to investigate impacts on that system. Two major 
probabilistic models are developed. The first model quantifies charging patters of PEVs 
at fast charging station, which are the future equivalents of present petrol filing stations. 
Four sub-models are developed that play with tuning different input parameters to help 
us have a broader understanding of fast charging patterns. A number of interesting 
outputs including load profiles, distribution of SOC (State of charge), and distribution of 
required number poles, distribution of number of charging per day and similar other 
distribution are generated f from the fast charging models. The second important 
models are the model that quantifies residential charging patterns of PEVs. Similar to 
fast charging models, a number of outputs including load profiles, SOC distribution, 
parking and charging time interval are among the important. 

The second important part is impact analysis of PEV fast charging on a given power 
system. Three fast charging stations are deployed in Västerås primary distribution 
network to study impacts PEV fast charging on system bus voltage. Similarly PEV 
residential charging models are deploying PEVs in Västerås secondary distribution 
network to study impacts of residential charging on transformer loading, hotspot 
temperature variation and accelerated aging factor profiles. 

 
Key words: PEV, BEV, PHEV, Plug-In, charging power, charging voltage, charging current, 

charging interval, probabilistic distribution 
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LIST OF SYMBOLS 

Symbol Explanation Standard unit 

         Variance battery capacity in class c [KWh] 

        Variance number of vehicles in each class [-] 

    
    

 
 Variance arrival time of a day in a week [hour] 

    
    

 
 Variance departure time of a day in a week [hour] 

  
       

 Arrival time of vehicle v of class c on day d [hour] 

     
    Maximum battery capacity of class c [KWh] 

     
    Minimum battery capacity of class c [KWh] 

  
       

 
Charging interval of vehicle v of class c on 
day d 

[hour] 

  
       

 
Departure time of vehicle v of class c on day 
d 

[hour] 

     
        

 
Grid energy required by vehicle v of class c 
on day d 

[KWh] 

    
    Number of PEV in class c [-] 

      Mean battery capacity of class c [KWh] 

   
    Mean arrival time of a day in a week [hour] 

   
    Mean departure time of a day in a week [hour] 

     Transformer loading at hour h [KW] 

     Rated transformer loading [KW] 

        Battery capacity of vehicle v in class c [KWh] 
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             Required grid energy per km [KWh/km] 

    Accelerated Aging Factor [pu] 

   Transformer oil  [gal] 

         
Charging current of vehicle v of class c on 
day d 

[A] 

   Maximum charging circuit capacity [A] 

   Total number of vehicles [-] 

     Vehicle class distribution in class c [-] 

         
Charging power of vehicle v of class d on day 
d 

[KW] 

     Penetration level [-] 

     No load transformer loss [w] 

     Rated transformer loss [w] 

         
Distance travelled by vehicle v of class c on 
day d 

[km] 

           SOC level of vehicle v of class c on day d [KWh] 

       Charging voltage of vehicle v of class c [V] 

   
Transformer cooling constant [-] 

   percentage of PEV in each vehicle class [%] 

   Transformer weight  [lb] 

     Ambient temperature at hour h [oC] 

   Hotspot temperature [oC] 

     Mean number of vehicles in each class [-] 

    Transformer oil thermal time constant [s] 

    Transformer winding thermal time constant [s] 

      Rated hotspot temperature rise over oil  [oC] 

        
 Change in expected life of transformer [Year] 

      Hotspot temperature rise over oil at hour h [oC] 

       Top oil temperature over ambient at hour h [oC] 

       Rated top oil temperature rise over ambient [oC] 

   Length of time step [hour] 

        Transformer loading factor at hour h [-] 

AD Average  [KW] 

B Constant  [-] 

D Demand [KW] 
d Day index [-] 
D(i, w) Demand at feeder i, in week w  [KW] 
D(i, w, d) Demand at feeder I, in week w, on day d [KW] 
D(i, w, d, h) Demand at feeder i in week w, day d, hour h [KW] 
E Energy  [KWh] 
E(i) Energy consumption at feeder i [KWh] 
h Hour index [-] 
i Feeder index [-] 
LF Load Factor [-] 
LF(d) Load Factor of a day in  a week [-] 
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LF(h) Load Factor of an hour in  a day [-] 
LF(w) Load Factor of Week w of a year [-] 
LF_type(h) Load Factor of a given load type in an hour [-] 
MD Maximum Demand [KW] 
MD(i) Maximum Demand at load feeder i [KW] 
N Standard normal value [0 1] [-] 
w Week index [-] 

LIST OF ACRONYMS  

Abbreviation Explanation 
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AC Alternating Current 
AER All Electric Range 
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DC Direct Current 
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1 CHAPTER ONE: INTRODUCTION 

1.1 Background 

We are in the era of technology where individual ICE (Internal Combustions Engine) 
driven mobility is an essential component of life in nations across the world. The car is 
used for both leisure and business purposes, for transportation of people and goods. It 
is, at the same time, a status symbol and emotional object. However, volatility in 
petroleum prices, security concerns associated with imported oil and anthropogenic 
climate change contribute to increasing interest in alternative vehicle technologies. 
According to the percent of world oil consumption used for transportation, 27.3 billion 
barrels of oil was consumed in 2006 worldwide [1.1]. Out of this 16.8 billion was used 
for transportation, which is about 61% of the total world oil consumption. At present, the 
U.S. is importing crude oil at the rate of 8.133 Mb/day1 and approximately 5.46 Mb/day 
of crude oil are produced domestically, according to U.S Energy Information 
Administration, Crude oil Supply and Disposition as of December 2009 data in [1.2]. As 
can be seen in Figure 1.1below, the consumption of oil world wide is rising exponentially 
while its discovery is falling radically. 

 

Figure 1.1: Consumption Vs Discovery of oil [1.3] 

Two-thirds (62.75%) of the oil used in the US is refined into gasoline and diesel fuel to 
power U.S. passenger vehicles and trucks, as of February 26, 2010 data in [1.4]. As can 
be seen in Figure 1.2 below, nearly all energy needed in the transportation industry is 
covered by petroleum oil, which is indeed the source of environmental and economical 
impacts in a large scale.  

 

Figure 1.2: Energy mix used in transportation [1.5] 

With a growing world-wide demand for crude oil, there has been a significant rate of 
change in its market price now standing (December 09, 2010) at $75.98 per barrel [1.6].  

                                                           
1
 Millions of barrels per day  
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One can easily see the historical price change of oil for the last 36 years as illustrated in 
Figure 1.3. 

 

Figure 1.3: World Nominal Oil Price Chronology: 1970-2007 [1.7] 

Apart from this, the burning of petroleum fuel emits CO2, the most serious greenhouse 
gas, into the atmosphere at levels now believed to be causing a global warming effect 
with very serious changes in global weather patterns, as can be seen in Figure 1.4  and              
Figure 1.5 below. Both figures show the high proportion of green house gas emission 
from the transportation sector. 

 

    

Figure 1.4: U.S. annual Greenhouse Gas Emissions, 2006 [1.8]              Figure 1.5: 
Global annual Greenhouse Gas Emissions, 2000 [1.9] 

The four major factors mentioned in the preceding paragraphs demands immediate 
solutions to shift the energy mix in the transportation industry so that its impact both on 
national security, economy and environment could be minimized. 

Due to the awareness of the negative environmental impacts of conventional ICE driven 
vehicles, the market today is demanding for alternatives that are more efficient than 
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„traditional‟ car concepts. A number of solutions have been proposed including 
increasing fuel economy, the use of ethanol, and the use of conventional HEVs (Hybrid 
Electric Vehicles) [1.10]. A closer look into performance and efficiency reveals the 
potentials of PEVs 2 to solve the problems at hand, having its own set of opportunities 
and challenges. The penetration of PEVs in the transportation industry can displace a 
considerable amount of oil used in the transportation industry by incorporating 
considerable electric energy from the grid in the sector, which will be a major step 
forward to resolve the major problems stated above. 

Diesel and Otto motor, both invented by the end of the 19th century, have over the last 
100 years been improved in both performance and efficiency. A highly efficient ICE 
reaches a ratio of about 35% between energy content of the fuel and actual kinetic 
energy, which is called tank-to-wheel efficiency. However, the ICE operates most of the 
time with less than 10% efficiency, while the rest of the energy is lost in heat [1.11]. 
Taking into account the losses for the production of gasoline or diesel from crude oil and 
its transport, the well-to-wheel efficiency of an ICE averages to 20% [1.11]. 

  

Figure 1.6: Global energy chain Well-to-wheel [1.11] 

Alternative drive trains and energy carriers such as fuel cells, bio fuel and natural gas 
engines have been investigated and installed in many cars, but have not proved to be 
the ultimate solutions as they only bring slight improvements and come together with a 
whole list of disadvantages [1.11]. 

In contrast to this stand BEVs (Battery Electric Vehicles). Invented in the 19th century, 
they provide a tank-to-wheel efficiency of greater than 86%3; enable a drive train without 
transmission, and produce, compared to an ICE, almost no noise emissions at all. Of 
course, electricity is not a primary energy carrier but must be produced first. This can, 
for example, be done by alternative energy sources such as wind or water. But even if 
the electricity stems from coal or gas power plants, an overall well-to-wheel efficiency of 
40% is reached, as can be seen in Figure 1.7 [1.11].  

                                                           
2
PEVs are electric vehicles which connect (plug-in) to the grid for some or all of its energy demand  

3
 Here tank-to-wheel efficiency is defined as the ratio of energy in the battery to kinetic energy at the wheel of the vehicle and this 
efficiency is calculated base on Figure 1.7  
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Figure 1.7: Well-to-wheel efficiency of Electric vehicle vs. Diesel vehicle [1.11] 

As a result, the introduction of electric driven vehicles in the transportation industries will 
nearly eliminate „an addiction‟ to oil and hence reduce greenhouse gas emission from 

transportation, open new opportunities for auto and power industries and bring a lower 
running cost for the consumers as the per mile energy from the grid is much cheaper 
compared with the same energy cost from oil. This will be discussed more in chapter 
two. 

For all their advantages stated, PEVs are taking a center stage in the current 
developments to resolve the negative impacts of conventional vehicles from 
transportation industry. Visions from research institutes even discuss an almost 
complete substitution of the conventional fleet by 2050 [1.11]. If this paradigm shifts 
from conventional oil fueled transportation vehicle to grid supplied transportation is to 
take place, there will be a significant challenges and opportunities waiting for both 
automobile industries, oil industries and power supply industries.  

If this mass deployment of PEVs becomes a reality, the current power system will 
become the petrol station of the future. Here is where the problem lies. If the current mix 
of energy in the transportation industry is shifted to the energy from the grid, the impacts 
of PEVs on the existing power system will be inevitable. This necessitates an extensive 
investigation to have knowledge of possible impacts they may have on the power 
systems. 

There are a rapidly growing number of studies on PEV performance and impacts. These 
studies can typically be classified as vehicle performance studies that look at the cost of 
ownership and emissions impacts of vehicles; supply adequacy studies that aim to 
assess the potential to meet the growing demand with existing generation assets; 
Vehicle to Grid (V2G) studies, that look at the value of vehicles for the provision of bi-

directional grid support services; and distribution system studies, which are limited in 
number, and which study the impact of increasing PEVs on the medium and low voltage 
infrastructure. There are a number of studies that can give fairly comprehensive results 
particularly for the first three categories. However, if utilities need to invest in the 
distribution infrastructure to support circuits feeding increasing numbers of PEVs, they 
will need good decision tools to help in the evaluation of investment. With this in mind, 
the goal of this diploma work is to develop a probabilistic model that allows distribution 
utilities to evaluate the impact of increasing PEVs on the power systems.  

1.2 Purpose and scope 

As stated above, the purpose of this diploma work is to develop a probabilistic model to 
quantify power system level impacts of PEV. The impacts PEV charging on the power 
systems can be realized in terms of added load. Formulating the added load profiles 
from PEV charging on a given power system, based on probabilistic parameters, is the 
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heart of this diploma work. The resulting load profiles from PEV charging can be used 
along with system base load profiles to investigate impacts on the power system. These 
two load profiles, base load profiles and added load profiles resulting from PEV 
charging are the corner stone of impact analysis on the system. 

One of the main problems encountered in the initial phase of this diploma work is lack of 
data on the system base load profile. Annual peak demand and annual energy 
consumptions at load feeders are the only available data of selected system of study. 
However to quantify impact analysis, load profiles divided in time on a given interval of 
time is required. As a result, a model based on IEEE Reliability Test System (RTS-96) is 
developed to generate load profiles for the selected system of study using available 
data. This important tool is applied in the selected system of study to generate load 
profiles for 8760 hours of a year. 

Once the base load profiles are at hand, the next challenge was to develop a 
probabilistic model that can quantify the pattern of load profiles from PEV charging. As a 

result, two important PEV charging models are developed. These are fast charging 
models and residential PEV charging models. Fast charging models consider charging 
of PEVs at fast charging stations4 whereas residential charging models consider 
charging PEVs at home.  

In residential PEV charging model, two sub models are developed. The first model 
considers charging PEVs at a fixed charging power level trough out the simulation. This 
will be compared with the second residential charging model where vehicles are 
charged at different charging power level which is a function of parking interval5, daily 
grid energy requirement by each vehicle and charging voltage level. The daily required 
grid energy is in turn a function of daily distance travelled by vehicles. The driving 
motors behind each model are statistic based random parameters which are 
probabilistically distributed. This includes distribution of daily distance travelled, daily 
grid energy requirements, and vehicle populations, state of charge (SOC) levels, and 
arrival and departure times of vehicles, distribution of battery capacities in each vehicle 
class and similar other parameters dictate the outputs from each models. 

There are a number outputs from residential charging models. Among these are per 
minute and hourly average hourly load profiles. These load profiles, along with base 
loads, are used to quantify impacts on distribution transformer loading and transformer 
hotspot temperature variation, which is the basis to determine transformer Accelerated 
Aging Factor (AAF). AAF can be used to determine transformer Loss Of Life (LOL). The 
other important output is probabilistic SOC distribution curve. SOC distribution curve 
can be used as a basis to formulate the optimum size of battery capacities to be used in 
PEVs. In addition to this, this curve can also be used to determine required charging 

infrastructures outside home or hybrid energy to be used. More detailed results and 
analysis will be made in Chapter six. 

The next most important model is fast charging models. There are two major differences 
between this model and residential charging model stated above. The first is the 
charging power level where PEVs are charged at high power level in an order 100 times 
higher than that in residential charging model. The second most important difference is 
the time when the charging takes place. Fast charging model takes into account vehicle 
arrival time distribution at the fast charging stations which is considered to be the same 
as vehicle arrival time distribution at petrol filling station today. On the other hand, 
residential charging model considers statistical daily arrival and departure time 
distribution from and to work respectively to charge vehicles. 
                                                           

4
 Fast charging stations are future equivalents of the present petrol filling stations 

5
 Parking interval of a vehicle is the time interval between arrival time of vehicle on day d and departure time of the same vehicle 
on day d+1 from and to work respectively  
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Similar to residential charging models the outputs from fast charging models are also 
dictated by number of probabilistic parameters including distribution of daily distance 
travelled, distribution of vehicle arrival time at fast charging stations, ranges of battery 
capacities, distribution of SOC levels, distribution of vehicles in different classes and 
others. To appreciate the beauty of the probabilistic model, a deterministic fast charging 
model is also developed and results are compared at length. 

Per minute and hourly average load profiles are among the outputs from PEV fast 
charging models. These outputs from the model along with the base load profiles are 
used to investigate the impacts of fast charging on the system bus voltages and results 
are illustrated and discussed. In addition to this the distribution of voltage dips in the 
system is also analyzed which can be used as the basis to optimize the size of energy 
storage devices needed at the fast charging stations to keep the system in the allowable 
operating limits. The other interesting result from this model is the distribution of 
required number of charging poles at the fast charging stations from which an 
economical decision on the optimum number of charging poles can be made. Apart 
from this, similar to residential charging models, the distribution SOC levels of PEVs 
coming to the fast charging stations are also covered. In addition to this, probabilistic 
distribution of number charging required per day per vehicle is also discussed. 

What is not included in this diploma work is model integration to accommodate 
clustering of PEV charging. Each model works independently of the other in its own 
domain. It is clear that a vehicle can charge both at home and fast charging station at 
different times on a given day based on daily distance it travelled and driving patterns. 
As a result, to have a good picture of the impacts of PEV charging on the given power 
system, it is important to consider this clustering of PEV charging both at home and 
outside home at different times in a day. This requires the integration the two or more 
models. However the models developed in this thesis do not consider clustered PEV 
charging. Residential charging and charging at the fast charging stations are considered 
independently. 

1.3 Structure 

This report is structured as follow. Chapter one (this chapter), is an introduction. In this 
chapter, the purpose and scope of the diploma work are described. In chapter two, the 
main challenges and opportunities, resulting from penetration of PEVs in the power 
systems are discussed in details from different perspectives. In Chapter three the 
domain in which the problems at hand are defined will be discussed and each important 
component in the domain of study will be described at length. In chapter four, the 
required parameters to solve the defined problems in chapter three will be elaborated. 
Chapter five will utilize the parameters defines in Chapter four to develop probabilistic 
models that can solve the problems. Chapter six is the most important chapter where 
the model developed in chapter five will be tested with a number of scenarios. Results 
from the defined scenarios will be presented and detailed analysis will be made in this 
chapter. In chapter seven important conclusions will be made. In addition to this, this 
chapter will point out some of important future works which are not covered in this 
diploma work. Chapter eight provides a list of references used in the whole report and 
finally in Chapter nine, some important supplementing information used in the project is 
enclosed. 
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2 CHAPTER TWO: OPPORTUNITIES AND CHALLENGES  

PEVs are taking center stage in the current developments to resolve the negative 
impacts of conventional vehicles from transportation industry. Visions from research 
institutes even discuss an almost complete substitution of the conventional fleet by 2050 
[2.1]. If this paradigm shift from conventional oil fueled transportation vehicle to grid 
supplied transportation is to take place, there will be a significant challenges and 
opportunities waiting for both automobile industries, oil industries and power supply 
industries. In this chapter some of these challenges and opportunities seen from 
different perspectives will be discussed. 

2.1 Global perspective 

The combination of high oil costs, concerns about oil security and availability, and air 
quality issues related to vehicle emissions are driving interest in the planned mass 
penetration of electric mobility in the near future. The following subsections will describe 
the potentials in PEVs in oil displacement, and hence emission shift which will finally 
lead to reduced cost of operation. 

2.1.1 Oil displacement 

The use of PEVs would represent a significant potential shift in the use of electricity and 
the operation of electric power systems to replace a significant portion of the petroleum-
fuelled drive energy. For many U.S. drivers, a PHEV-406 could reduce average gasoline 
consumption by 50% or more [2.4].  According the report in [2.5], in 2005, the United 
States consumed gasoline at a rate that required 9.1 million barrels of crude oil per day. 
Considering that the LDV (Light Duty Vehicle) fleet consumes 97% of the entire 
gasoline supply, the conversion of 73% of the LDV fleet to PHEVs could reduce 
gasoline consumption by a crude oil equivalence of 6.5 million barrels per day. This 
reduction in the U.S. gasoline consumption is the equivalent of 52% of foreign 
petroleum imports. In short, this indicates the potential in PEVs in displacing significant 
proportion of oil. 

2.1.2 Emission shift 

This significant shift in energy from petroleum to energy from the grid means, as stated 
in section 2.1.1, shifting emissions from millions of individual vehicles to a few hundred 
power plants. The conversion of LDVs to PEVs has significant implications for overall 
emissions as electricity displaces gasoline. According to [2.5], the impact of penetration 
of PHEV in emission reduction was analyzed and the result shows that for U.S as a 
whole, the total greenhouse gases are expected to be reduced by a maximum of 27% 
from the projected penetration of PHEVs (73%). The key driver for this result is the 
overall improvement in efficiency along the electricity generation path compared to the 

entire conversion chain from crude oil to gasoline to the combustion process in the 
vehicle.  

2.1.3 Cost of energy 

Thirdly, the economic incentive for drivers to use electricity as fuel is the comparatively 
low cost of fuel. According to the data in [2.4], the electric equivalent of the “drive 
energy” in a gallon of gasoline delivering 25-30 miles in a typical midsized car is about 
9-10 kWh, assuming a vehicle efficiency of 2.9 mile/kWh7. The cost of this electricity 
using the U.S. average residential rate for 2005 (9.4 cents/kWh) is under $1, and could 
be even less when using off-peak power. This cost is directly comparable to the end-
user cost of gasoline, which nationally averaged $2.60 for 12-month period ending in 
                                                           

6
 The notation "PHEV-XX" is commonly used to specify the PHEVs All Electric Range (AER). For instance a PHEV-40 

corresponds to a PHEV with a 40 miles electric range. Typical PHEVs AER are in the range 20-60 miles.   
7
 Kilo Watt Hour, unit of energy 
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August 2006. Furthermore, several researchers have noted that by adding V2G 
capability, where the vehicle can discharge as well as charge, PEV owners may also 
receive substantial revenue by using the stored energy in their vehicles to provide high-
value electric system services such as regulation, spinning reserve, and peaking 
capacity. 

2.2 Consumer perspective 

From a consumer point of view the incremental cost of driving PEVs using electric utility 
energy can be surprisingly attractive. For example, according results in [2.2], gasoline 
has an energy content of 0.125 Btu/gallon, or 36.5 kwh per gallon.  Assuming a $3 per 
gallon price, the cost of this energy is about 8.22 cents per kWh.  This appears to be 
considerable when compared with average residential electric energy prices. However, 
one needs to consider energy conversion efficiencies. As we can recall from section 
1.1above, moving energy from a battery pack and electric motor, and then into the 
wheels has an average efficiency of perhaps 86% and ICEs have achieved a ratio of 

35% between energy content of the fuel and actual kinetic energy, which is called tank-
to-wheel efficiency. However, ICE operates most of the time with less than 10% 
efficiency, while the rest of the energy is lost in heat. Hence, the incremental operating 
cost of the PEVs would be expected to be less than 1/5 that of a traditional gasoline 
engine [2.2].  Furthermore, since the PEV batteries could be charged at home during 
night (off-peak), substantially lower-priced electric energy could be used.  

However the main challenge for the mass penetration to the consumer is the high initial 
cost associated with it. As a result, to gain the most from these vehicles, there must be 
an incentive from a third party to subsidize at the initial phase of their penetration. 

2.3 Utility perspective 

Utilities and grid operators become interested in providing the infrastructure for electro 
mobility and pushing the entire development. This happens mainly for three reasons: 
additional electricity sales, grid stabilization and image improvement. At the moment the 
utilities are the major driving forces behind the development of the electro mobility 
industry, and invest a considerable amount of money in pilot projects, joint ventures and 
promotion campaigns [2.1]. 

If mass scale PEVs are to be introduced, electric utilities will be the ‘’gas stations of the 

future’’. This will have a potential challenges and opportunities from utility perspective. 
PEVs represent a potentially new semi-dispatchable load for electric utility. At a 
minimum they represent new, primarily off-peak users of substantial amounts of electric 
energy. 

In addition to just being energy users, in aggregate PEVs could also provide large 
amounts of potentially controllable stored energy, refer section (2.3.1). With such a 
network, the stored energy in PEVs and their energy storage capacity could become a 
highly controllable, system-level resource. Potential applications include the ability to 
greatly reduce spinning generation reserves, the ability to increase transmission system 
capacity by providing a responsive post-contingent control, and the ability to mitigate 
LMP (Locational Marginal Pricing) market volatility [2.2]. 

On the other hand, a mass introduction of PEVs in the transportation industry can 
create a number of challenges in the current power systems. Unless the charging 
patterns of PEVs are controlled, this can have a significant impact on the power system 
components such as distribution transformer, system voltage, distribution cable and 
harmonic generation. The following sub section will have a closer look at some of the 
challenges and opportunities from utility perspective. 
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2.3.1 Vehicle to Grid (V2G) 

Vehicles that plug in to the power grid for some or all of their energy needs have the 
potential to make valuable contributions to the production, transmission, and distribution 
of electric power. PEVs have a battery pack (energy storage device) and a charger. The 
charger takes in alternating current (AC) power from the grid and converts it to direct 
current (DC) to charge the battery pack.  This charger can be bidirectional that can be 
able to deliver power back to the grid from the vehicle‟s battery as well as charge the 
battery.  

Vehicles with bi-directional chargers can cycle power to and from the grid under remote 
control, even while charging.  Vehicles with unidirectional chargers (i.e. they cannot 
feed power back to the grid), can still provide services to the grid by allowing the remote 
control of the battery charging rate or as a controlled load. These concepts of vehicles 
providing services to the grid are collectively referred to as “vehicle to grid” (V2G). V2G 
is a term used to describe this use of bi-directional charge/discharge capabilities of 
PEVs to provide ancillary services and peak shaving for the power grid. V2G does not 

necessarily mean that power has to flow from the vehicle to the grid; vehicles with 
unidirectional chargers that are controlled to provide a service to the grid are also 
providing a V2G service [2.3]. 

As a result, PEVs will be a new resource to assist with grid operations.  Specifically, the 
energy storage capacity of PEVs can be a storage resource for the grid that can be 
controlled remotely by the utilities, aggregator or a grid operator to perform ancillary 
services for the grid. Further, since PEVs‟ load can be remotely dispatched to provide 
V2G, the current grid model of dispatching generation to match load can be transformed 
to load that can be dispatched to match generation.  

Electrical grid operation requires, assuming in real time, that the total generation 
matches the total load.  If there is a mismatch between generation and load, the 
frequency of the grid will deviate from the standard of 60 Hertz. Grid operators use a 
variety of tools to keep the grid operating smoothly. These tools are commonly referred 
to as “ancillary services”. Some examples of ancillary services are spinning reserves, 
non-spinning reserves, and regulation [2.3].  

According to [2.3], a number of studies have identified regulation as the most valuable 
ancillary service that PEVs could provide.  Regulation is a service that gives the grid 
operator the ability to directly control the output of a power plant up and down in real 
time (at 4 second update rates typically).  Regulation is used to fine-tune the match 
between generation, load, and interchange with other control areas and to contribute to 
overall grid frequency control. Regulation is divided as regulation up and regulation 
down. Regulation up represents increasing a power plant‟s output from a nominal level 
and regulation down represents decreasing a power plant‟s output from a nominal level.  
Power plants that provide regulation services will have a nominal scheduled power 
output level, often referred to as the POP (Preferred Operating Point), and a regulation 
up limit, and a regulation down limit as can be seen in Figure 2.1. 
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Figure 2.1: Example power profile for a power generator providing regulation up 
and regulation down. The shaded area represents the energy generated over the 
one-hour period [2.3] 

The power fluctuations due to dispatch of regulation in the power profile shown in Figure 
2.1, could equally well come from PEVs whose charger power levels are controlled by a 
utility, aggregator, or the grid operator. The only difference is the value of the POP.  For 
a power plant, the POP is a positive value (i.e. a nominal generation level).  For a PEVs, 
the POP could be positive (for bidirectional charger), zero, or it could be negative (for 
unidirectional charger). That is, the regulation service does not directly depend on the 
value of the POP; it is the capability to deviate up or down from a particular POP value. 
Hence the POP can just as easily be negative (a load) as positive (generation). 

Figure 2.2 illustrates a PEV providing regulation with a POP value of zero.  This vehicle 
has a bi-directional battery charger and is providing power to the grid for regulation up 
and taking power from the grid for regulation down.  

 

Figure 2.2: Example power profiles for PEVs with a bi-directional charger 

providing regulation up and down ancillary service with a zero POP.  The shaded 
area above zero represents energy delivered to the grid from the vehicle 
(regulation up) and the shaded area below zero represents the energy consumed 
by the vehicle (regulation down) [2.3] 

Figure 2.3 illustrates a PEV with a unidirectional charger providing regulation with a -7 
kW POP value. The vehicle is drawing power from the grid at a nominal “POP” rate of -7 
kW and providing 7 kW of regulation up and 7 kW of regulation down.  At the regulation 
up limit, the vehicle is placing no load on the grid and at the regulation down limit, the 
vehicle is placing a 14 kW load on the grid. 
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Figure 2.3: Example power profiles for a PEVs with unidirectional chargers 
providing regulation up and down ancillary service with a POP value of  -7kW (ie. 
7 kW of load).  The shaded area represents the energy delivered to the vehicle by 

the grid over the one-hour period [2.3] 

2.3.2 Power supply adequacy 

Electrification of the transportation sector could increase generation capacity and 
transmission and distribution requirements, especially if vehicles are charged during 
periods of high demand. If charging patterns of PEVs are controlled by utility or if 
customer is price sensitive and charge during the off-peak time, both the incremental 
cost of energy and new investment on the power system infrastructure can be greatly 
minimized [2.4]. 

A study by National Renewable Energy Laboratory of U.S Department of Energy 
investigated Costs and Emissions Associated with PHEV Charging [2.4]. This study was 
performed on the utility of „Xcel Energy’ Colorado service territory which serves about 
55% of the state‟s population. To see the impacts PHEV charging on this system, an 
overall penetration of 500,000 vehicles was assumed, equal to roughly 30% of LDV in 
the Xcel Energy service territory. The results for four charging scenarios; i.e. 
Uncontrolled Charging, Delayed Charging, Off-Peak Charging and Continuous Charging 
are shown in Figure 2.4 and                  Figure 2.5 below. 

         

Figure 2.4: Summertime Load Patterns with PHEV Charging [2.4]                  Figure 2.5: Wintertime Load Patterns with PHEV Charging [2.4] 

The results in Figure 2.4 and                  Figure 2.5  above demonstrate that on an annual 
basis, uncontrolled charging and continuous charging cases require a large fraction of 
PHEV charging to occur during periods of moderate to high loads. The time-delayed 
and off-peak charging cases show an improvement in the distribution of additional 
charging. The majority of the increased load occurs in the lower demand region. A 
noticeable benefit of off-peak charging is the increased minimum load. Table 2.1, taken 
from [2.4], summarizes the load impacts resulting from the 500,000 PHEV scenarios. 
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Table 2.1: Impacts of Various Charging Cases on System Capacity and Energy 
Requirements  

Charging 
Scenario 

Increase in Total Load 
(%) 

Increase in Peak Demand 
(%) 

Uncontrolled 
2.7 2.5 

Delayed 
2.7 0 

Off-peak 
2.7 0 

Continuous 
4.8 4.6 

According the result from Pacific Northwest National Laboratory study on impacts 
assessment of PHEVs on electric utilities and regional US power grids [2.5], significant 
portions of the U.S. gasoline-operated vehicle fleet could be fueled with the available 
electric capacity.  For the nation as a whole, about 84% of the energy needed for 

operating cars, pickup trucks, and SUVs (or a maximum of 73% of the energy of the 
LDV fleet) could be supported using generating, transmission, and distribution capacity 
currently available provided that the charging profiles of the vehicles are controlled. 

2.3.3 Distribution system impacts  

Distribution systems are typically designed for specific load carrying capability based on 
typical load consumption patterns of customers.  When PEVs are deployed, the patterns 
of electric power demand change. It is possible that the electric power system may be 
adequate to handle the new patterns and levels of demand or it is possible that periods 
of overloads on this system may increase. Both distribution circuits and transformers 
are vulnerable to these overloads with the transformer being more susceptible to 
overloads. 

Transformers fail most frequently due to line surges/short circuits, the deterioration of 
insulation, lightning strikes, inadequate maintenance, high oil moisture content, and 
loose connections [2.6]. Additional load, such as that required to charge PEVs, 
increases the average operating temperature of the transformer due to increased 
current in the transformer windings, which contributes to insulation breakdown. 
Insulation failure increases the quantities of dissolved gases in the insulating oil.  
Formation of gasses in the insulating oil reduces the dialectic strength of the oil and can 
create or aggravate short circuits between coil windings; high levels of combustible 
gasses can lead to explosions [2.6]. 

Additional demand from PEV charging may have positive or negative effects on 
transformer aging. Firstly increased charging demand will increase transformer 

temperatures, which may decrease transformer life expectancy. Secondly, the flatter 
load profile resulting from off-peak PEV charging could reduce the daily expansion and 
contraction of the transformer, which could reduce wear-and-tear on the transformer 
bushings, which are the primary entry points for oxygen, water, and contaminates, 
which intern decrease the probability of transformer failure.  

2.3.4 Harmonic generation 

Harmonic distortion from the power electronics in PEV chargers may also have some 
negative effects on the distribution infrastructure. PEVs charge by drawing low voltage 
AC power and converting it to DC. This process involves rectifying the AC signal and 
running the rectified signal through a DC/DC converter. Both of these processes inject 
harmonic distortion in the distribution system. Harmonic distortion causes power loss in 
transformers due to increased average temperature generated from increased eddy 
currents in the transformer core and decreased skin depth on the transformer windings 
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and harmonic distortion also creates higher hotspot temperatures compared to loads 
without harmonic distortion [2.6]. 

Large numbers of harmonic loads on a single distribution circuit will result in some 
harmonic cancellation between the loads which may reduce overall harmonic distortion 
[2.6]. If PEV penetration was sufficiently high such that the majority of off-peak load was 
from PEVs, harmonic loading on distribution equipment could be very high during night-
time charging hours. However, lower night time temperatures will help cool the 
transformer, which may keep the transformer from overheating even if the internal 
losses are higher. According to [2.6] a 10% Total Harmonic Distortion (THD) could 
correspond to a 6% loss in transformer life, relative to a load with no harmonic 
distortion. 
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3 CHAPTER THREE: PROBLEM DESCRIPTION 

3.1 Background 

Electric Drive Vehicles (EDVs) have gained attention, especially in the context of 
growing concerns about global warming and energy security aspects associated with 
road transport. The main characteristic of EDVs is that the torque is supplied to the 
wheels by an electric motor that is powered either solely by a battery or in combination 
with an internal combustion engine. This covers HEVs, BEVs and PHEVs, but also 
Photovoltaic Electric Vehicles (PVEVs) and Fuel Cell Vehicles (FCVs). 

PEVs, which include PHEV and BEV, represent a promising future direction for personal 
transportation sector in terms of decreasing the reliance on fossil fuels while 
simultaneously decreasing emissions and cost of energy for driving as discussed in 
section 2.1 above. Energy used for driving is fully or partially shifted to electricity leading 
to lower emission rates, especially in a low carbon intensive generation mixture as in 
Sweden. Despite the benefits of PEVs for vehicle owners, care will need to be taken 
when integrating PEVs into existing electrical grids. 

Distribution systems are typically designed for specific load carrying capability based on 
typical load consumption patterns. When PEVs are deployed in this system, the 
patterns of electric power demand will change due to added load on the grid system 
from PEVs. The extent to which the deployments of PEVs affect the distribution system 
depends on their charging characteristics which include both charging power level and 
charging time. 

Given that the charging patterns of PEVs are controlled either by the utility or the 
customer side, it is possible that the electric power system may be adequate to handle 
the new patterns and levels of demand. On the other hand, if the charging patterns of 
PEV cannot be controlled by either side, it is possible that periods of overloads on this 
system may increase. As a result, both distribution system‟s circuits and transformers 
are vulnerable to these overloads with the transformer being more susceptible to 
overloads [3.2]. 

Given standard loading profiles and proper maintenance, manufactures report an 
expected transformer lifetime of 40-50 years. Under more realistic conditions the actual 
average lifetime of a transformer is 17 years [3.2]. Transformers fail most frequently due 
to line surges/short circuits, the deterioration of insulation, lightning strikes, inadequate 
maintenance, high oil moisture content, and loose connections. Additional load, such as 
that required to charge PEVs, increases the average operating temperature of the 
transformer due to increased current in the transformer windings, which contributes to 
insulation breakdown. Insulation failure increases the quantities of dissolved gases in 
the insulating oil. Formation of gasses in the insulating oil reduces the dialectic strength 
of the oil and can create or aggravate short circuits between coil windings; high levels of 
combustible gasses can lead to explosions [3.2]. 

In general, additional demand from PEV charging may have positive or negative effects 
on transformer aging. Firstly increased charging demand will increase transformer 
temperature, which may decrease transformer life expectancy. Secondly, the flatter load 
profile resulting from off-peak residential PEV charging could reduce the daily 
expansion and contraction of the transformer, which could reduce wear-and-tear on the 
transformer bushings, which are the primary entry points for oxygen, water, and 
contaminates, which intern decrease the probability of transformer failure [3.2]. 

Impacts of PEV charging on the distribution system can be realized in terms of the 
added load. This added load is a function the additional energy demand due to PEV 
deployment. As discussed in chapter two, most of existing power systems has the 
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potential to deliver this added energy. The question will be when (charging time interval) 
and how fast (charging power level) this energy is required from the grid. If the energy 
required by PEVs can be delivered in a longer time span and during light load condition, 
this can be achieved with almost no or little impacts on the target system. On the other 
hand, if this same energy is required in a short time interval and or during a peak load 
period, that will lead to a serious consequences both on the system voltage and power 
system components like distribution transformers and cables. 

It is the keen interest of this diploma work to develop a probabilistic model of these 
charging patterns that can help to quantify the impacts on the power systems. This will 
intern lead to appropriate actions to be taken to bring the system back to the desired 
operating conditions. To hit this target, a proper understanding of the problem at hand is 
mandatory. The main objective of this chapter will be to describe the domain in which 
the problem is defined. Figure 3.1 below illustrates the boundary in which all the 
problems for this diploma work are defined. In the following subsections, we will take a 
closer look at the descriptions of some of components in the domain which will help to 
have a better picture of the problem at hand. 

 

Figure 3.1: Boundary of the problem  

As can be seen in Figure 3.1, the domain in which the problem is defined can easily be 
visualized. It consists of a distribution system which is supplied by sub transmission 
system. Within the distribution system is a residential area equipped with a residential 
slow chargers where vehicles can be charged at home. In addition to this, a road side 
semi-fast chargers are also illustrated where vehicles can be charged (this is not 

considered in this study). Most importantly, this system includes a fast charging station 
where PEVs are charged at high power level (less than 10minute charging time). This 
short lasted delivery of energy at the fast charging station has a serious consequence 
on the system voltage and distribution system components. To limit this impact, fast 
charging stations need to be equipped with energy storage device like ultracapacitors 
and supper flywheel. This fast charging station is the future PEV charging station 
equivalent of the current petroleum fueling station.  

In short, this is a short description of the region where the problem at hand is defined. 
Our objectives will be developing probabilistic models to analyze the impacts PEV 
charging in this system. This is why it is so important to define components in within the 
boundary where the problems at hand are defined. 

Section (3.2) starts by defining the power system in general and the distribution system 
in particular where PEVs are to be deployed. Section 3.3 will define PEV with some of 
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their important parameters. Section (3.4) describes the EU grid in terms of available 
charging power and grid standards. Section 3.5, which is the last and important section, 
will define charging parameters and charging infrastructures. 

3.2 Distribution system 

The major components of an electric power system are shown in Figure 3.2 below. One 
of these components is distribution system which is the nearest point where electric 
energy is consumed. 

 

Figure 3.2: Major power system components [3.4]  

The distribution system typically starts with the distribution substation that is fed by one 
or more sub transmission lines as shown in Figure 3.3. In some cases the distribution 
sub-station is fed directly from a high-voltage transmission line, in which case there is 
likely no sub transmission system. Each distribution substation will serve one or more 
primary feeders. With a rare exception, the feeders are radial, which means that there is 
only one path for power to flow from the distribution substation to the user. 

 

Figure 3.3: Simple distribution substation [3.4] 

There are number of components in distribution sub stations. Among this is the 
distribution transformer which is there to step the voltage down to a level required by the 
loads at the feeder end as can be seen in Figure 3.3. 

3.2.1 Nature of load and Individual Customer Load 

The modeling and analysis of a power system depend upon the load on the system. 
The problem is that the load on a power system is constantly changing. The closer we 
are to the customer, the more pronounced will be the ever changing load. In order to 
come to grips with load, it is necessary to have a look at the load of an individual 
customer [3.4]. 

The load that an individual customer or a group of customers presents to the distribution 
system is constantly changing. Figure 3.4 illustrates how the instantaneous kW 
8demand of a customer changes during two 15-minute intervals. 

                                                           
8
 Kilo watt, unit to measure power 
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Figure 3.4: Customer demand curve [3.4] 

In order to define the load, the demand curve is broken into equal time intervals. In 
Figure 3.4 the selected time interval is 15 minutes. In each interval the average value of 
the demand is determined. In Figure 3.4 the straight lines represent the average load in 
a time interval. The shorter the time interval, the more accurate will be the value of the 
load. The average value of the load in this interval is defined as the 15-minute kW 
demand [3.4]. If we have list of values of these demands over a given interval of time, 

as shown in Figure 3.5 below, they represent a demand curve or load profile. 

 

Figure 3.5: Demand curve of a Customer for 24 hours of a day [3.4] 

3.2.2 Basic Definitions 

3.2.2.1 Demand (D) 

Demand is defined as the average value of load over a given interval of time. The 24-
hour 15-minute kW demand curve for a customer is shown in Figure 3.5. This curve is 
developed from a series of values that gives the 15-minute kW demand for a period of 
24 hours. 

3.2.2.2 Maximum Demand (MD) 

The demand curve shown in Figure 3.5 represents a typical residential customer. Each 
bar depicts the 15-minute kW demand. Note that during the 24-hour period there is a 
variation in the demand. The largest of these demands is the 15-minute maximum kW 

demand. 

3.2.2.3 Average Demand (AD) 

During the 24-hour period, energy will be consumed. For example, the energy 
consumed in kWh during each 15-minute time interval is computed by: 

                
 

 
                                                                                   3-1 

The total energy consumed during the day is the summation of all of the 15-minute 
interval energy consumptions. The 15-minute average kW demand of a day is 
computed by: 

    
            

     
                                                                                                3-2 
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Where,              is the total KWh energy consumed by the load in a given day and 
      is intervals in 24 hours of a day. This formula can be applied to calculate an 
average demand in a given interval of time provided that we have the total energy 
consumed in that interval of time. 

3.2.2.4 Load Factor (LF) 

LF is a term that is often used when describing a load. It is defined as the ratio of the 

average demand to the maximum demand. 

    
                

              
                                                                                         3-3 

If we know      and Maximum Demand in a given time interval, we can determine the 
average demand in that time interval. In many ways load factor gives an indication of 
how well the utility‟s facilities are being utilized. From the utility‟s standpoint, the optimal 
load factor would be 1.00 since the system has to be designed to handle the maximum 
demand. 

All these important terminologies defined above will extensively be used in section (5.1) 
to generate the base load profile of the given distribution system which is one of the 
corner stone to start system analysis combined with the load profiled from PEVs. 

3.2.3 Distribution transformer loading 

A distribution transformer provides service to one or more customers. Each customer 
has a demand curve similar to that shown in Figure 3.5. However, the peaks, valleys 
and maximum demands will be different for each customer. The load curves for each 
customers served by the distribution transformer show that each customer has its 
unique loading characteristic. If the load curves of each load, connected to the 
transformer, are added within each respective time interval, the result is the diversified 

distribution transformer loading curve. Figure 3.6 below shows an aggregated 24-hour 

demand curve on a transformer. 

 

Figure 3.6: Transformer diversified demand curve [3.4] 

It is important to know transformer loading curve. If PEVs are to be deployed on this 
transformer, the load profile due to PEV charging will be added on this base lading 
which can then be used for the system analysis. 

3.3 Electric Derive Vehicles 

3.3.1 Definition  

EDVs, which include PHEVs and BEVs, are important components of the problem at 
hand. As described earlier, the main characteristic of EDVs is that the torque is supplied 
to the wheels by an electric motor that is powered either solely by a battery or in 
combination with an internal combustion engine. In this section PHEVs and BEVs along 
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with ICE and HEVs will be defined that can help to have a better image of vehicles in 
the study domain. 

 Internal Combustion Engine (ICE) Vehicles 

ICE vehicle refers to the vehicle which is mainly propelled by the energy from the fuel 
tank. The internal combustion engine is an engine in which the combustion of a fuel 
(generally, fossil fuel) occurs with an oxidizer (usually air) in a combustion chamber. 
The main advantage of using ICE in vehicles is that it can provide high power-to-weight 
ratios together with excellent fuel energy density [3.6]. 

 Hybrid Electric Vehicle (HEV)  

HEV refers to vehicles which combine conventional ICE propulsion system with an 
electric propulsion system. The presence of the electric powertrain is intended to 
achieve either better fuel economy than a conventional vehicle, or better performance 
[3.6]. 

 Plug-In Hybrid Electric Vehicles (PHEV)  

PHEV refers to vehicles that can use, independently or not, fuel and electricity, both of 
them rechargeable from external sources. PHEVs can be seen as an intermediate 
technology between BEVs and HEVs.  It can indeed be considered as either a BEV 
supplemented with an ICE to increase the driving range or as a conventional HEV 
where the All Electric Range (AER) is extended as a result of larger battery packs that 
can be recharged from the grid [3.6]. PHEVs can be designed with the same types of 
technological architecture as current hybrid vehicles, namely series-hybrid, parallel-
hybrid, or combined series-parallel hybrid (split). Series-Hybrid is to be associated with 

electric cars since only the electric motor provides power to drive the wheels. Sources 
of electrical energy are either the battery pack (or ultra capacitors) or a generator 
powered by a thermal engine. An example of PHEV series is the famous Chevrolet Volt 
developed by General Motors. Such vehicles are also called Extended-Range Electric 
Vehicles (EREV) [3.7]. In Parallel-Hybrid, both the electric motor and thermal engine 
can provide power in parallel to the same transmission. Power split or series/parallel 

hybrid combines the advantages of both parallel and series hybrid concepts.  This is for 

instance the architecture implemented in the Toyota Prius model. This relatively 
complex architecture allows running the vehicle in an optimal way by using the electric 
motors only, or both the ICE and the electric motors together, depending on the driving 
conditions. Figure 3.7 shows important similarities and differences between HEV and 
PHEV. 

 

Figure 3.7: Simplified representation of HEV/PHEV configuration (blue: series; 
red: parallel) [3.7] 
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 Battery Electric Vehicles (BEV) 

BEV refers to vehicles propelled solely by electric motors. The source of power stems 
from the chemical energy stored in battery packs which can be recharged on the 
electricity grid. Similar to HEVs and PHEVs, BEVs have the ability to recapture some of 
the energy utilized through regenerative breaking by converting the propulsion motor 
into a generator when breaking.  Since the BEVs have no other significant energy 
source, the battery must be selected to meet the BEV range and power requirements. 
The future of such vehicles strongly depends on the battery developments (performance 
and cost) [3.7]. 

3.3.2 Control strategy 

A key aspect of vehicle operation is the control strategy or algorithm used for the PEV 
powertrain.  When driven, the PEV SOC, i.e. the fraction of total energy capacity 
remaining in the battery, varies within a certain range of values, given by the difference 

between maximum and minimum allowable SOC of the battery. There are two modes of 
control strategy, Charge Sustaining (CS) mode and Charge Depleting (CD) mode. 

 CS mode 

In this mode of operation, the SOC over a driving profile may increase and decrease but 
will, on the average, remain at its initial level, as can be seen in Figure 3.8. The battery 
pack in HEV is sized only to provide accelerating power, to overcome vehicle inertia, for 
the electric drive to work synergistically with the ICE in providing propelling torque.  The 
control algorithm for a CS HEV maintains the battery SOC at a relatively high level, 
generally around an SOC ≈ 80% in order to allow for maximum use of regenerative 
braking recapturing some portion of the vehicles kinetic energy. Then the IC engine is 
used primarily to provide sustaining torque to maintain essentially constant speed 
operation.  Thus, if the battery started out at an SOC = 100%, the algorithm would 
provide driving torque in such a fashion as to deplete the battery charge until the 
desired SOC ≈ 80% level is reached, and then run charge sustaining about this level. 
During driving periods that involve constant speed cruising and regenerative braking, 
battery energy used for acceleration is replaced [3.7], [3.13]. 

 CD mode 

In this mode of operation, the vehicle is powered only or almost only by the energy 
stored in the battery, and the battery‟s SOC gradually decreases up to a minimum level, 
which depends on the battery size. The vehicle thus mostly behaves as an electric car 
in this mode of operation, which particularly suits to urban driving. A simplifying concept 
for the control of a CD PEV is that this it can be considered similar to a CS HEV 

algorithm except that a much lower SOC, perhaps an SOC ≈ 25%, is used before 
charge-sustaining control is implemented in PHEV. This lower value of SOC is 
maintained to extend the life of the battery [3.7], [3.13]. Depending on the driving 
conditions, the two modes can be combined over the distance travelled in such a way 
as to reap the full advantage of the PHEV and extend the driving range. The different 
modes of operation used in BEV, PHEV and HEV are illustrated in Figure 3.8. 

The control strategies in PHEV and BEV are similar as they follow charge depleting 
strategy. Their difference stems when lower SOC limit is reached. At this point, PHEV 
switch to CS mode to extend distance where as BEV has to stop or recharged to travel 
further. 
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Figure 3.8: Example of discharge cycles for BEVs, HEVs and PHEVs [3.7] 

3.4 Available charging power 

Europe has several types of grid systems. The main two systems are TN (Terra-
Neutral), which is dominant in the German speaking countries and TT (Terra-Terra) in 
the countries, where homes are typically supplied by gas (for cooking and heating – e.g. 
Italy, Spain, France, Benelux) [3.5]. Those grid systems are characterized by a different 
quantity of phases typically delivered to a household and different levels of current 
typically delivered per phase. In TN Countries, user over-proportionally own a garage or 
private parking spot (50%-70%), compared to TT countries, where this percentage can 
shrink down to about 20% [3.5]. 

In TN-countries, 2 or 3-phase is available in most of the households. A typical value for 
current assured is 25 - 40A where voltage level is 230V (phase to neutral) and 400V line 
voltage. This is sufficient for heating, cooking, washing and even charging PEVs with a 
power of up to 3x32A=22kW [3.5]. In TT countries, 1-phase only is available in most 
household. Typical range for current is 16-20A. In the best case (if no other appliances 
are used in the meantime), a maximum charging power of up to 3.7kW is available for 
charging PEVs [3.5]. 

According to Protoscar‟s conclusion [3.5], TN countries can support up to 3x16A at 
400V line voltage (11 kW), or 1x32A at 230V phase voltage (7.4 kW) residential 
chargers. Higher power is technically feasible but related to very high cost for network 
connection. On the other hand, TT countries cannot support more than 3.7kW chargers. 
For PEV charging in those countries, the only alternative above 3.7kW home charge is 
public fast charging. Finally it is concluded that, up to 3.7kW on board chargers (with 

possibility to further limit the current) will be the only EU-standard for EV residential 
charger. 

3.5 Charging infrastructures and charging power levels 

There are different types of charging infrastructures, in this case called Electric Vehicle 
Supply Equipments (EVSE), which are used as a gateway to connect PEVs with supply 
utility. As can be seen in Figure 3.1, there are different types of EVSEs that are installed 
at residential, road side and fast charging stations having different charging power 
levels. In general, charging can be classified as AC charging and DC charging. This 
section will describe different types and ranges of charging power and some EVSEs 
that can provide this charging power. 
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3.5.1 AC Charging 

This charging consists residential charging, roadside charging poles and fast ac 
charging poles. The EVSE provides an outlet for PEVs to be Plugged-In to the utility 
and supplies an AC power to the vehicle and the vehicle‟s onboard charger intern 
converts this into DC and charges its battery. In this section, only charging 
infrastructures and charging power levels, important for the study are considered. 

 Residential charging (AC, 230V, 10-16A, 2.3-3.7kW) 

Residential slow charging is typically associated with overnight charging. This charging 
scheme makes use of the PEV on-board charger, which is sized based on input voltage 
from the grid. These on board chargers charge the battery pack of PEVs with energy 
from the grid provided by EVSE. A PHEV with a 5kWh battery pack, for example, would 
have a 2.4kW on-board charger that allows complete recharge on the order of two 
hours. Similarly, a BEV with a 40kWh battery pack might have a 3.7kW charger, which 
allows complete recharging on the order of ten to eleven hours, depending on thermal 

considerations and charge algorithms for the battery chemistry. This type of charging 
infrastructure is available at domestic socket or wallbox at domestic garage where a 
charging power level in the range of 2.3-3.7KW at 230V/10-16A [3.8]. 

Residential charging infrastructure, EVSE, used to charge LAMPO29, an electric vehicle 
from Protoscar, is shown in Figure 3.9 below. This home charging equipment is 
developed by ALPIQ to charge the vehicle at 3.3KW charging power level [3.9]. 
 

 

Figure 3.9: Residential Charging Infrastructure used to Charge LAMPO2 [3.10] 

3.5.2 DC Charging 

DC charging EVSE supplies a DC power to PEVs. In this case, EVSE consists of an off-
board charger which is used to convert the AC power from utility into DC to facilitate fast 
charging. There are two types of DC charging as described in [3.8], only one of this 
considered in this section. 

 DC-Ultra Fast Charging Station (>100kW) 

Figure 3.10 below shows the ultimate goal of future charging stations for PEVs. In this 
charging station, charging PEVs takes place in less than 10 minute by high DC output 
power from the off-board chargers in the charging station. This infrastructure is crucial 
to overcome one of the main hurdles of the BEVs, the so called “range anxiety”, i.e. the 
fear to be without energy and without available charging point.  

                                                           
9
 LAMPO2  is an electric sports car developed by Protoscar demonstrated on 2

nd 
 of March 2010 at the Geneva Motorshow [3.10] 
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Figure 3.10: Level III Fast Charging Station, AKERWADE POWER 
TECHNOLOGIES [3.12] 

Figure 3.11 below illustrate ABB fast charging pole used to supply 80KW power to 
charge LAMPO2 [3.9]. Combinations of these chargers can be used to form the fast 
charging station shown in Figure 3.10 above. 

 

Figure 3.11: ABB Fast Charger used to Charge LAMPO2 [3.10] 

3.5.3 Energy storage system 

The major problem at fast charging station is a jump in load due very high power 
demand due to PEV charging. As can be seen from Figure 3.10 above, if there are eight 
charging poles at the fast charging station with 250KW charging power capability and 
there is a probability that eight PEVs arrive at the charging station at a time in a given 
hour of a day, this will have a total power demand of 2MW. This sudden jump in power 
demand can seriously affect the system bus voltage and distribution system 
equipments.  To control this short time high demand, local energy storage systems like 
ultracapacitors and advanced flywheel can be used. These energy storage devices 
store energy during low demand period and dump their high power during short timed 
high charging power demand occasions. Figure 4.4 illustrates different energy carriers 
that can be used as energy storage at fast charging stations.  
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4 CHAPTER FOUR: REQUIREMENTS 

In the preceding chapter, the problem at hand was defined with the help of components 
within the boundary of defined study area. This included defining a general distribution 
system, charging power levels, charging infrastructures, charging parameters and 
different types of PEVs with their corresponding characteristics. 

Our objective is to develop a probabilistic model that can quantify the impacts of PEV 
charging on a given power systems. To get to that point we need to define the 
parameters which are important to develop the model which can intern help us to solve 
the problems defined in Chapter three. Hence, this chapter will have a closer look at 
those parameters which are important to develop the model. 

The first thing to know will be the particular distribution network into where PEVs are to 
be deployed. In section (4.1), the distribution network in Västerås, which is selected for 
the study to represent the distribution network defined in section 3.2.1, will be 
discussed. Following this, available PEV technologies on the market will be presented in 

section (4.2). In this section important vehicle parameters which are the stepping stones 
for the simulation to come are illustrated. Section (4.3) will discuss the most important 
battery parameters. In section (4.4) vehicle charging parameters, which gives light on 
charging characteristics of PEVs and on their load profiles will be discussed. Section 
(4.5) will close the chapter by defining parameters which dictate grid energy 
requirements of PEVs. 

4.1 Area of study 

4.1.1 Selected Network topology  

  

Figure 4.1: Selected area of study 

Figure 4.1 above illustrates the topology of selected study network and Figure 4.2 
represents 132KV/11KV primary distribution system in Västerås, Sweden within the 
selected network topology. This is the distribution network where fast charging stations 
are to be deployed. It consists of a number of secondary substations, which steps down 
11kv to 400v for distribution. It is also characterized by light load conditions. The station 
was built in less than 20 years ago with significant spare capacity of future expansion of 
load. It was designed for a maximum of 80MVA peak load, while currently it is a loaded 
with a peak load of 20MVA, which is only 25% of its maximum capacity [4.1]. 
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Figure 4.2: Västerås primary distribution network 

Within the primary distribution network, there are a number of secondary sub-stations, 
which are used to further distribute the power down to consumer level. One of these 
secondary sub-stations, marked in red box, in Figure 4.2 above is expanded and shown 
in Figure 4.3 below. 

 

Figure 4.3: Västrås secondary distribution network, Allmogeplatsen secondary 
SS 

This substation is called „Allmogeplatsen‟ secondary substation. The distribution 
network represents a single line diagram of 400/230V three phase systems. It consists 

of eleven load feeders. Some of the load feeders feed residential loads, some feed 
commercial and others feed mixed load types (residential and commercial). This is the 
distribution network where residential PEV charging is to be deployed [4.1]. 

4.1.2 Network data  

All the network data for both primary and secondary distribution network are taken from 
ABB internal report, PHEV Task force. Those data include substation data, distribution 
transformer data of both primary and secondary distribution and distribution feeder data 
[4.1]. 

4.1.3 Base load data 

The impact of PEV charging on a given power system can be realized in terms of the 
additional load they impose on the system. For the system to be analyzed, two load 
profiles are mandatory. One load profile is the existing base load profile and the other is 
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the load profile from PEV charging. The load profile can be hourly load profile or per 
minute load profile. Once these two load profile are made available, they will be added 
together and applied to the network to make required system analysis. However, there 
is no enough data of base load profile for the selected system. In the primary 
distribution network shown in Figure 4.2, the only available base load data are annual 
peak power demand at each load feeder as shown in Table 4.1 below. This table does 
not include the base load data for „Allmogeplatsen‟ substation. 

Table 4.1: Annual peak demand power in the primary distribution network  

Feeder Name 

Annual peak demand at load feeders 

Power 
Factor 

Active Power 
(MW) 

Reactive 
Power(MVr) 

Apparent 
Power(MWA) 

Load (1) 0.3039749 0.1472218 0.33775 0.9 

Load (2) 0.4676537 0.2264951 0.519615 0.9 

Load (3) 0.3507403 0.1698713 0.389711 0.9 

Load (4) 0.2338269 0.1132475 0.259808 0.9 

Load (5) 0.2572095 0.1245723 0.285788 0.9 

Load (6) 0.374123 0.1811961 0.415692 0.9 

Load (7) 0.2104442 0.1019228 0.233827 0.9 

Load (8) 0.374123 0.1811961 0.415692 0.9 

Load (9) 0.5611844 0.2717942 0.623538 0.9 

Load (10) 0.00467653 0.00226495 0.005196 0.9 

Load (11) 0.5611844 0.2717942 0.623538 0.9 

Load (12) - 
Station and 
Commercial 0.4208883 0.2038456 0.467654 0.9 

Load (13) 0.1870614 0.09059805 0.207846 0.9 

Load (14) 0.02338269 0.01132475 0.025981 0.9 

Load (15) 0.4208883 0.2038456 0.467654 0.9 

Load (16) 0.444271 0.2151703 0.493635 0.9 

Load (17) 0.5611844 0.2717942 0.623538 0.9 

Load (18) 0.2338269 0.1132475 0.259808 0.9 

Load (19) - 
Aggregate load 7.061573 3.420076 7.846192 0.9 

Similarly, the only available data in „Allmogeplatsen‟ secondary distribution network 
shown in Figure 4.3, is 1.081MW annual peak power demand at the substation and 
annual energy consumptions at each load feeders. The load feeders represent different 
groups of loads as shown in Table 4.2 below. Some of these loads are purely 
residential; others commercial and the remaining are mixed loads. The proportion of 
residential and commercial loads in the mixed load types are illustrated in Table 4.2. All 
the data in the given tables are taken from ABB internal report [4.1]. 

Table 4.2: Annual energy consumption in the secondary distribution network  

Load name Load type Annual energy 

consumption(KWh) 

ET18701 Mixed (12.5% residential, the rest 
commercial) 

1108982 

ET18702 Commercial 1824326 

ET18703 Residential 33341 

K349301 Mixed (12.5% residential, the rest 
commercial) 

441155 
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K349302 Residential 67141 

K382901 Residential 148149 

K58201 Residential 63045 

KL1431A.B.C.D.E Residential 312330 

KL1431F01 Residential 75201 

KL4209A01 + 
K420901 

Residential 255704 

KL4209B02 + 4 
others 

Residential 402580 

As we stated before, it is mandatory to have a base load profile for a given interval of 
time so that it can be added with the load profile from PEV charging which will intern be 
used for a system impact analysis. However, we don‟t have a base load profiles of the 
type stated in section 3.2.2, except that given in Table 2.1 and Table 4.2. As a result, 
we need to find a way to generate the base load for a desired interval of time based on 
the data given in the tables. Models, based on IEEE Reliability Test System (RTS 96), 
are developed to generate base load profiles using these data. This will soon be 
discussed in Chapter five.  

4.2 Electric Vehicles on the market 

Electric vehicles are no longer a dream; they are already there on the market. The 
following table, Table 4.3 illustrates some list of electric vehicles from different 
manufacturers which are already on the market [4.2]. The table also gives some 
important data associated with the particular vehicle including battery capacity and grid 
energy requirement per unit distance which are all important to determine energy 
requirements of vehicles. 

Table 4.3: Main features of the fully electric vehicles (cars and light duty vehicles) 
already present in the market  

 Brand 

 

Model 

 

Capacity 

(kWh) 

Range 

(km) 

Consumption 

(kWh/100km) 

 

Classification 

 

Data Source 

C
a
rs

 

Renault   Twingo Quickshift E   21.45  129  16.60 Medium   http://www.atea.it/twingo-elettriche.htm 

Fiat   Panda   19.68  120  16.40 Medium   http://www.atea.it/panda-elettriche.htm 

NICE   Mega City   10.50  80  13.05 Small   http://www.nicecarcompany.co.uk/  

FIAT   500   22.00  113  19.53 Medium   http://www.italiaspeed.com/  

Mitsubishi  i‐MIEV   16.00  160  12.50 Medium   http://www.mitsubishi‐motors.com  

MINI   MINI‐E   35.00  180  19.44 Big   http://www.miniusa.com/minie‐usal    

TESLA   Roadster/Model S   55.00  300  18.33 Big   http://www.teslamotors.com/   

CODA   CODA‐EV   33.80  180  18.78 Big   http://www.codaautomotive.com  

Lighting   GTS   35.00  175  20.00 Big   http://www.lightningcarcompany.co.uk/  

MILES   ZX40S/ZX40ST   10.00  105  9.56 Small   http://www.milesev.com/    

Phoenix   SUV/SUT   35.00  209  16.73 Medium   http://www.phoenixmotorcars.com/   

L
ig

h
t 

D
u

ty
 

V
e

h
ic

le
s
 

AIKè   ATX   8.40  70  12.00 LDV   http://www.alke.com/electric‐vehicles.html  

Piaggio   Porter   25.74  110  23.40 LDV   http://www.ch.vtl.piaggio.com/porter_el.htm  

LDV   Maxus Electric    160  LDV  http://www.ldv.com   

http://www.atea.it/twingo-elettriche.htm
http://www.atea.it/panda-elettriche.htm
http://www.nicecarcompany.co.uk/
http://www.italiaspeed.com/
http://www.mitsubishi‐motors.com/
http://www.miniusa.com/minie‐usa
http://www.teslamotors.com/
http://www.codaautomotive.com/
http://www.lightningcarcompany.co.uk/
http://www.milesev.com/
http://www.phoenixmotorcars.com/
http://www.alke.com/electric‐vehicles.html
http://www.ch.vtl.piaggio.com/porter_el.htm
http://www.ldv.com/
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Table 9.4 and Table 9.5, enclosed in chapter 10, provides additional information on 
different classes of PEVs including both PHEV and BEV from different manufacturers 
with their detailed vehicle characteristics including battery capacity, the type of battery 
used, AER and similar other characteristics. 

4.3 Battery characteristics  

4.3.1 Energy and power density 

Success and defeat of electric cars directly depend on battery. Battery performance and 
cost are essential factors for the development of electric vehicles and has been the 
main bottleneck in the history of electric mobility. One of battery characteristics which 
have been a bottleneck for the development of PEVs is the energy density. The energy 
density of conventional batteries such as Lead-acid or Nickel-metal-hydride is by far 
lower as the energy density of fuel. PEVs therefore reached unacceptable overall 
weight. Only lithium-ion technology enabled the recent development of batteries in 
acceptable dimensions [4.3]. Figure 4.4 shows energy density and power density of 
different energy carriers. 

 

Figure 4.4: Energy density and power density of different energy carriers [4.3] 

The most important specification for PEV application is the specific energy density, 
meaning how much energy can be stored per kg (Kilogram) of the storage medium. 
Only a high specific energy density allows for a large range while keeping the overall 
weight acceptable. Looking at Figure 4.4, we notice that conventional fuel has a specific 
energy density that is about 10 times higher than the one of a Li-ion battery10 [4.3]. 

4.3.2 Battery capacities 

The energy storage capacity or battery capacity, measured in KWh, is of high 
importance since it will directly determine the distance the vehicle can drive on the CD 
mode, as well as the mass of the battery pack. For PHEVs, the energy storage 
requirement considered in the literature typically varies from ~6kWh to 30 kWh 
depending on the CD range. This can be compared to 1-2 kWh for conventional HEVs 
and 30-50 kWh for BEVs [4.4]. 

The energy storage capacity represents the „available‟ or „total‟ energy capacity 
depending on whether the SOC level is taken into account or not (e.g. a 10 kWh of total 
energy capacity operating with a 65% charge swing11 would have only 6.5 kWh of 
available energy).  

                                                           
10

 The actual heating value of gasoline, and  therewith  the  total stored energy,  is actually 47MJ or 13kWh per kg  
11

 The useable range of battery capacity 
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4.3.3 Allowable SOC limits 

PEV batteries, particularly Li-ion batteries can be extremely dangerous if mistreated. 
They may explode if overheated or if charged to an excessively high voltage. 
Furthermore, they may be irreversibly damaged if discharged below a certain voltage. 
To reduce these risks, Li-ion batteries generally contain a small circuit that shuts down 
the battery when discharged below a certain threshold or charged above a certain limit 
[4.4]. Regarding PEV applications, this imposes the absolute need of an advanced 
BMS12 and explains why the car‟s battery usually operates between 10% and 80% SOC 
[4.4]. 

4.4 Vehicle charging parameters 

4.4.1 Charging and Discharging 

The charging rate is stated in the unit „C‟ and displays the charging current relative to 
the battery‟s capacity. Hence, a charging rate of 1C means a charging current of 48.5A 
in one hour for a battery with 48.5Ah13 capacity. In order not diminish capacity and 

durability of the battery, the charging rate14 should ideally be kept between 0.6 and 1C15  
[4.3]. Table 4.4 illustrates different charging rates associated with charging modes [4.3]. 

Table 4.4: Terminology for charging modes  

Terminology   Charging rate 

Slow charging   0.1 C 

Quick charging   0.3 C 

Fast charging   1.0 C 

Ultra-fast charging   >>1.0 C 

4.4.2 Charging control 

 Constant-current - Constant-voltage control: Figure 4.5 shows conventional 
approach for charging Lithium batteries which are vulnerable to damage if the 
upper voltage limit is exceeded. The charge voltage rises rapidly to the cell upper 
voltage limit and is subsequently maintained at that level. As the charge 
approaches completion, the current decreases to a trickle charge. Cut off occurs 
when a predetermined minimum current point, which indicates a full charge, has 
been reached. This explains why charging to 100% takes disproportionately 
longer than charging to 80%. 

 

Figure 4.5: Li-ion charging characteristics [4.3] 

                                                           
12

 Battery  management  system (BMS) mainly  controls  charging  and  discharging  of  the  battery  in order  to prevent damage, 
overloading and overheating  

13
 The capacity of a given battery is often expressed as Ah (Ampere-hour) 

14
 For a given battery capacity given in Ah, the charging or discharging rate C can be calculated by dividing the charging or 
discharging current in ampere to the battery capacity in Ah 

15
 Recent research promises the possibility of safe charging at rates that are about 30 times higher [4.3] 
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 Intelligent Charging System: Intelligent charging systems integrate the control 
systems within the charger with the electronics within the battery called BMS16, to 
allow much finer control over the charging process. The benefits are faster and 
safer charging and battery longer cycle life. 

4.4.3 Charging an electric vehicle 

This section is meant to illustrate the requirements for charging of PEVs. Based on the 
Mitsubishi i-MiEV data taken from Table 4.3, this specific vehicle has total cell voltage of 
330V and battery capacity in 16KWh. From these battery parameters, the storage 
capacity in Ah is calculated to be 48.5Ah17 , from which charging or discharging rate can 
be calculated for a given current.  

As stated before, when charging electric vehicles, the closer the battery gets to 100% 
the more the charging power must be reduced in order to prevent overcharging and 
overheating. Therefore, for this illustration a case in which the battery is only charged 
from 0% SOC to 80% SOC at a constant charging current is considered to determine 

values in Table 4.5 [4.3]. 

Table 4.5: Required time to charge a battery to 80% SOC for different grid voltage 
and currents  

 Phases at 
interface 
to car 

(P-N) 
Voltage 
at 
interface 
to car [V]  

Current 
going 
into car 
[A] 

Current 
relative 
to 
capacity 
[C]18 

Power 
[kW]19 

Required 
time [h]20 

Slow charging   1 phase 
AC   

230   6   0.1   1.4    9.3 

 
1 phase 
AC 

230   10   0.2   2.3   5.6  

Quick charging   1 phase 
AC   

230   15   0.3   3.5   3.7  

 
3 phase 
AC 

230  16.0   0.3   11.0     70mts 

 3 phase 
AC   

230   32.0   0.7   22.1   35mts 

AC Fast Charging   3 phase 
AC   

230   63.0   1.3   43.5   18mts 

DC Fast Charging   DC   330   151.5   3.1   50.0   15mts 

DC Ultra fast 
charging  

DC  330   303.0   6.3   100.0   8mts 

 DC   330   606.1   12.5   200.0   4mts 

 DC   330   1212.1   25.0   400.0   2mts 

 

Table 4.5 gives an overlook of a few realistic cases of charging infrastructure. In a 
modern house, this car could be charged within 3 hours and 42 minutes at a standard 
plug. Fast charging at 400V and 55.4A (3-phase, 230V, 32A) would still take 35min. In 
the considered cases, the charging rate does not exceed 2.6C, which is still acceptable 
to not damage the battery. Recent research promises the possibility of safe charging at 
rates that are about 30 times higher [4.3]. DC-ultra-fast charging, enabling a charge in 

                                                           
16 Battery  management  system (BMS) mainly  controls  charging  and  discharging  of  the  battery  in order  to prevent damage, 

overloading and overheating  
17

 The storage capacity of a given battery is often expressed as Ah (Ampere-hour). If battery capacity in KWh and total cell voltage 
in V are given, the storage capacity in „kAh„ is calculated by dividing kWh by the total cell voltage 

18
 Calculated by dividing current going into car to battery capacity in Ah, 48.5Ah in this case 

19
 Power is calculated by multiplying charging voltage and current at the car interface  

20
 Calculated by dividing useable battery capacity, in this case 80% of 16KWh by the available charging power 
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two minutes would require a power of 400kW. If this is done in the range of the cell 
voltage (330V), a current of 1212A would be required. 

4.5 Grid energy requirement 

PEV charging parameters, including charge power, charge energy, and charge times, 
can be established by evaluating typical daily vehicle trips and daily vehicle distance 
traveled. Actual PEV driver behavior and an evaluation of charge power requirements 
bring additional light to charging infrastructure requirements for PEVs. 

As stated earlier, one of our objectives is to determine the load profile due to PEV 
charging. In other word, we want to determine the load profile of PEV charging seen 
from the grid side. This load pattern is a function of required energy from the grid, 
charging power level and the required charging interval which determines how fast the 
charging time will be. 

The daily energy requirement of vehicles from the grid is a function of the statistical 
daily distance it travels. As a result, to determine the energy requirements of vehicle in a 

given study area on a given interval of time, it is crucial to know the statistical 
distribution of vehicle distance travelled in the desired region and interval of study. 

Once the statistical distribution of distance traveled by PEVs in the study interval is 
determined, the next important step will be to know grid energy requirements of each 
vehicle per unit distance travelled. This data, which is dependent on the driving pattern, 
vehicle mass, driving speed and other vehicle parameter, varies from vehicle to vehicle. 
According to some literature, this value is estimated in the ranges of 20--35kWh/100km 
[4.2]. Comparing this value with the data provided by some manufacturers given in 
Table 4.3, this looks a bit over estimated. This is probably due to a possible mistake of 
the authors that convert the energy from liter of gasoline equivalent/100km to 
kWh/100km assigning the half part to the electric consumption [4.3]. According to [4.4], 
this grid energy requirement in per unit distance increases linearly with the vehicle 
mass, around 6-7 Wh21/km for every 100 kg. 

With the knowledge of daily distance travelled and grid energy requirements in per unit 
distance traveled by PEVs, total daily grid energy required by each vehicle can be 
determined. How fast this energy is obtained from the grid depends on the available 
charging power level of chargers and the charging capability of BMS. 
  

                                                           
21

 Measure of electrical energy in watt-hour (Wh) 
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5 CHAPTER FIVE: THE MODELS 

This chapter is one of the most important chapters where everything described in the 
preceding chapters are put together to develop probabilistic models that can quantify 
impacts of PEV charging on a given power system. It is organized into three main 
themes including base load profile model, PEV charging model and distribution system 
impact model. In the first subsection, section 5.1, models to generate base load profiles 
for the selected system based on IEEE Reliability Test System (RTS-96) will be 
developed. Following this, in section 5.2, probabilistic models to quantify the load 
profiles from PEV charging will be developed. In this section, residential charging model 
and fast charging models are considered. The last section, section 5.3, will discuss a 
model to quantify the impacts of the load profiles resulting from residential charging 
models. 

5.1 Base load profile model 

As stated in section 4.1.3, it is important to have base load profile of the target system 
to be studied. Once we have the existing base load profile of the system, a load profile 
due to PEV charging will be added on the base load to be used for system analysis. The 
existing base load profile of the target system of study tells us the strength of the 
system. The classification of the system as strong or weak grid depends on the existing 
base load. However, only limited base load data are given for the system of study as is 
shown in Table 4.1 and Table 4.2. As can be seen from these tables, only annual peak 
load data is given in Table 4.1 and annual energy consumption is given in Table 4.2. 
However what is important for system analysis is a load profile divided in time. This is 
why it is important to develop a model to generate the base load profile of the system at 
hand. It is therefore the goal of this section to formulate a mathematical model to 
generate base load profile based the available data. 

5.1.1 IEEE Reliability Test System (RTS-96) 

The basic data which is used to generate the base load profile is taken from „The IEEE 
Reliability Test System-1996 (RTS-96)‟. It is a report prepared by the Reliability Test 
System Task Force of the Application of Probability Methods Subcommittee. It 
describes an enhanced test system (RTS-96) for use in bulk power system reliability 
study, which permits comparative and bench mark studies to be performed on a new 
and existing reliability evaluation techniques. This test system, RTS-96, is so advanced 
that it can be used as a representative of any typical power systems for it has almost all 
the different technologies and configurations that could be encountered in any power 
systems [5.1]. 

What is important about this test system is that it contains a load factor, defined in 
section 3.2.2.4, which is missing from the give base load data of the target system. As 
we recall from section 3.2.2, the load factor (LF) defines the relationship between the 
average demand or the demand in a given interval and the peak demand in that 
interval. If we have the load factor and peak demand in a given interval of time, we can 
determine the average demand or, in a technical sense of the word, the demand in that 
interval of time. Refer section 3.2.2 for the basic terminology definitions. IEEE RTS-96 
network topology and the load factors for Weekly Peak Load in Percent of annual peak, 
Daily peak load in Percent of Weekly Peak and Hourly peak load in Percent of daily 
Peak are given Chapter 10 (Figure 9.1, Table 9.1, Table 9.2, Table 9.3). 

5.1.2 Primary substation base load model 

The primary distribution network, which is used for the study is shown in Figure 4.2 and 
base load data in the distribution network are given in Table 4.1. As we can see from 
the table, the only data we have are annual peak load at each load feeder. As stated 
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above, we know from section 3.2.2.4 that if we have a load factor and a peak in a given 
interval of time, the average demand or demand in that interval of time is calculated as: 

                                                                                                              5-1 

Where:-        ,               ,                   

From RTS-96, Table 9.1 we have load factors for 52 weeks of a year and from Table 
4.1, we have a list of annual peak load for each load feeders in the substation. From 
these two data, we can calculate the weekly peak demand for each feeder in the 
substation as a function an annual peak of the load feeder and its load factor in that 
week. This can be formulated as:- 

  
                                                                                                                                          5-2 

Where:- 

                                                

                                                              

                                          

From equation 5-2, we see that we have a peak demand for each particular week in a 
year. And if we have a peak demand in a particular week, the demand in the days of 
that particular week can be calculated using the RTS-96 load factor data given in Table 
9.2. This can be formulated as in equation 5.3 below. 

                                                                                              5-3 

Where: 

                                                                     

                                                              

                                                             

                                          

At this point, we have a peak load in a particular day of the year. If we have a peak load 
in a particular day of the year, an hourly load profile for 24 hours of that particular day 
can be calculate based on RTS-96 load factor data given in Table 9.3. The whole RTS-
96 load profile calculation is summarized in equation 5.4 below. 

                                                                                     5-4 

Where: 

                                                                                            

                                                              

                                                             

                                                             

                                          

From equation 5-4, we can generate an hourly load profile for 8760 hours of a year for 
each load feeder in the given substation! 

5.1.3 Secondary substation base load model 

Figure 4.3 illustrates „Allmogeplatsen‟ secondary distribution network taken from the 
primary distribution network. An hourly load profile for this distribution network is 
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calculated in a similar fashion with that of primary distribution network, with two 
exceptions. First, for this distribution network, we have only one annual power peak at 
the substation and annual energy consumption at each load feeder. (Refer section 
4.1.3). Second, we are nearer to the consumer or load center in this secondary 
distribution network than we were in the primary distribution network. As a result, the 
type of the load on the feeder matters in the load profile calculation for that feeder. This 
is to say, we may have different types of loads at the load feeders such as residential, 
commercial and mixed types which have different daily load profile curve with different 
peaking time. For this reason, data from residential and commercial daily load profile 
curve are taken to modify the result generated from RTS-96. These two load curves are 
taken from Public Service Electric and Gas Company (PSE&G) and shown in Figure 5.1 
(a) and Figure 5.2 (a) below [5.2]. 

       

(a) Actual load profile from [5.2]                    (b) Approximated percentage residential 
load profile 

Figure 5.1: Daily residential load profile 

 

        

(a) Actual load profile from [5.2]                           (b) Approximated percentage 
commercial load profile 

Figure 5.2: Daily commercial load profile 

PSE&G has developed this Dynamic Load Profiling by reading the load samples from 
meters each day and producing daily load shapes which reflect actual usage for that 
customer segment for the same day. To make it suitable for usage to generate hourly 
load profile for the system, data in Figure 5.1 (a) and Figure 5.2 (a) are sampled at each 
hours of the day and expressed as percentage of the peak in a particular day as shown 
in Figure 5.1 (b) and Figure 5.2 (b) above. 

At this point we have all we need to generate the load profile at load feeder in the 
secondary distribution network. This is given in equation 5.5 below. 

                              
    

      
   

                                  5-5 
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Where:

                                                                                             

                                                              

                                                             

                                                             

                                                

     

 

   

                                                   

                                                                                                            

                                        

5.1.4 Simulated base load profiles 

 

Figure 5.3: Simulated peak day hourly load profile in the primary distribution 
network 

 

Figure 5.4: Simulate peak day hourly load profile in Allmogeplatsen secondary 
distribution network 
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Figure 5.3 and Figure 5.4 shows hourly load profile of peak summer day of a year for 
primary and secondary distribution network respectively. Similar load curves for the 
whole distribution network can be generated by the model for 8760 hours of the year. 
Note that Load 19 is not illustrated in Figure 5.3 for convenience.  

To raise the degree of confidence on the accuracy of the generated load profile from the 
simulation, one test was carried out in „Allmogeplatsen‟ distribution network to verify the 
result. The test was based on the comparison of the measured annual peak power 
demand and annual energy consumption at the secondary distribution substation and 
the simulated annual peak demand and annual energy consumption at the same 
substation. The result was found to be about 0% error in annual peak at the distribution 
substation and -2.78% error in KWh annual energy consumption at the substation. This 
error in the base load profile tells us that the model used to generate the base load 
profile is the best way of generating the base load in case one does not have enough 
information on the system base load profile for the selected network for study. 

5.2 PEV Charging Models 

Once we have the base load profile at hand, the next step will be to determine the load 
profile from PEV charging. It is at this point that formulation of a probabilistic charging 
model to quantify PEV charging is important. The reason why the model is called 
„Probabilistic‟ is because of the random nature of most of the parameters defining the 
problem at hand. Some of these random parameters are daily distance travelled by 
each vehicle, grid energy requirement in per unit distance travelled, vehicle charging 
time and charging interval, vehicle battery capacity and SOC level which are all 
statistical in nature. Therefore, it is the keen interest and devotion of the following 
sections to develop probabilistic, mathematical model based on statistical data that can 
help us generate the load profile from PEV charging. 

In this section, two major PEV charging models will be developed, residential and fast 
charging models. Section 5.2.1 starts by describing and defining important parameters 
common to the models. Following this, section 5.2.2 will develop and discuss residential 
PEV charging model. In this same subsection, two sub case models are considered 
which depend on the available output power from the charger. The last section, section 
5.2.3, will describe and develop PEV charging model at fast charging stations. 

5.2.1 Common random input parameters  

There are three common random input variables for both residential and fast charging 
models. These are: 

 Vehicle class population 

 Battery capacity and 

 Daily grid energy requirement 

All these input parameters are probabilistic in nature as will soon be evident. This is in 
fact some of the parameters which made the model to be probabilistic, which primarily 
depend on the stochastic behavior of consumers. 

5.2.1.1 Classes of vehicle population 

The model begins by defining four classes of PEVs as shown in Table 3.1 below. These 
four vehicle classes were purposely selected to provide a diverse vehicle fleet 
representative of what a real vehicle fleet could look like in the future [5.3]. 
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Table 5.1: Definition of vehicle classes 

Vehicle 
class 

Description % of PEV 

1 Compact passenger cars    

2 Full size passenger cars    

3 Medium size SUV and pick-up 
trucks 

   

4 Large size SUV and pick-up trucks    

The parameter    defines the percentage of PEV in each vehicle class. The sum of the 
percentage in each vehicle class represents the total penetration level of PEVs. This is 
represented as: 

   
 
                                                                                        5-6 

Where:                                             

Thus, if there are    total passenger vehicles in the defined system area, then the total 
number of PEVs in         will be given by (      .  

PEV class population describes the expected number of PEVs in each vehicle class 
described in Table 5.1. It is a random variable because it is a function of vehicle class 

distribution,      , shown in Table 5.2 below. This table shows the future distribution 
vehicles on the road in each class [5.3]. 

Table 5.2: IC vehicle class distribution  

 Class 1 Class 2 Class 3 Class 4 

Distribution 
of vehicles, 

      

0.2 0.3 0.3 0.2 

Given the total number of vehicles in the system is     and the percentage penetration 
level of PEVs is     , the total number of PEV in the system will be        . Then the 

number of PEVs in each vehicle class will be normally distributed with mean      and 

variance         which are calculated as: 

                                                                                                          5-7 

                                                                                                              5-8 

Where    is usually set to be 1% [5.3] 

To determine the random values of the number of PEVs in each class, normal 
distribution is selected because normal distribution occurs naturally and it can 
realistically represent stochastic behavior of customers [5.3]. The „Box-Műller „method is 
used to compute normally distributed random variables as: 

                                                                                             5-9 

Where,    is a standard normal value (a normal random variable with a mean of zero 

and a variance of one),    and    are independent and identically distributed pseudo 
random numbers distributed uniformly over the range [0, 1]. Then the number of PEVs 

in each class,    
   , is calculated as: 

    
                                                                                                 5-10 
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Where the number of PEV in each vehicle class,     
    is randomly distributed with 

mean      and variance        

5.2.1.2 Battery capacity 

The only way these four classes of vehicles defined above can be distinguished in the 
models is by their battery capacities. As a result a range of battery capacities that that 
can represent vehicles in each class are defined. This is important because the battery 
capacity is the only factor which can limit daily distance travelled by each vehicle. It is 
assumed that each vehicle class is represented by a range of battery capacity with 
minimum and maximum limit. This is to say each vehicle in class „c‟ can have any 

random value of battery capacity in the range between      
             

    where 

     
             

     are parameters which define range of battery capacity for 
vehicles of class c. 

Similar to the distribution of vehicles in each class, normal distribution is assumed for 
the battery capacity of a particular vehicle in a given class in the defined range. Hence 
the battery capacity of vehicle „v‟ in class „c‟ is formulated as: 

                                                                                                             5-11 
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                                                                      5-13 

Where: 

                                                 

                                        

                                                  

                                

5.2.1.3 Distribution of daily distance travelled 

This is one of important parameters to the model. Daily grid energy required by each 
vehicle is a function of daily distance travelled and SOC level remaining in the battery. 
SOC by itself is a function of daily distance travelled and battery capacity. As a result, 
knowing the statistical distribution of daily distance travelled by each vehicle in the area 
of study is the key to determine the required energy from the grid. 

Once the daily energy requirement of a particular vehicle is determined, generating the 
load profile resulting in from this energy demand will be easy. It merely depends on how 
fast (charging power level) and when (charge start time) to get this energy from the grid.   

Daily grid energy required by each vehicle, which is a function of distance travelled, 
SOC level and required grid energy per unit distance, is calculated as: 

     
                                                                                          5-14 

Where: 
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As we can see from equation 5-14 above, the daily distance travelled, useable SOC and 
grid energy required per km determines the daily energy requirement of a particular 
vehicle from the grid. The useable SOC level of a particular vehicle in a particular day is 
calculated as: 

                                                                                                5-15 

Where: 

                                                         

                                                          

                                                                  

                                                             

As we can see from this equation, the useable SOC can be negative which indicates 
that the distance traveled on that particular day is beyond the capacity of the battery. In 
this case, the solution will be either that the vehicle is recharged more than once per 
day, as is done for fast charging model, or use a hybrid energy source to finish the 
distance as is considered in residential charging model. If none of these are possible, 
the car has to stop or the consumer behavior has to change to lower the maximum daily 
distance travelled or battery capacity has to be increased. The detailed analysis of this 
will be made in chapter 5. 

5.2.2 Residential charging model 

The main differences between residential charging model and fast charging model are 
the charging power levels and arriving time distribution of vehicles for charging. This 
model considers the charging characteristics when PEVs are charged at home only. 
Normally daily charging is assumed to starts when a particular vehicle arrives home 
from work. This daily vehicle arrival time from work is statistical in nature with a mean 
and variance arrival and departure time. 

For the time performance parameters of departure time and arrival time, normal 
distribution are assumed as a best estimate of random consumer behavior. Different 
timing distributions are used to model the potential different consumer behavior on 
weekdays versus weekends. Hence the random arrival and departure times of vehicles 
on a given day of a week are formulated as: 

  
           

        
    

 
                                                                         5-16 

  
           

        
    

 
                                                                        5-17 

Where: 
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All the parameters given above are probabilistic and depend on statistics. The arrival 

time   
       

 for                               must occur after the departure time 

  
       

 for                               in the simulation. To achieve this 
specification, an acceptance-rejection method is used in the model.  Let   

  be a 
particular generated arrival time and    

  be a particular generated departure time, both 

generated based on given statistics.  Each generated pair (  
  ,   

 ) is checked, and if 
  

  <   
  , then a new pair is generated. The process is repeated until   

  >   
  and 

the generated pair is accepted and stored for further use. 

Two specific case models are considered in residential charging model. The first model, 
Case I, charges the vehicle during parking interval, the time interval between daily 
arrival time of vehicle (v) on day (d) and its departure time to work on the next day, day 

(d+1). The output power required from the onboard battery charger may vary from day 
to day which is a function of random daily energy requirement and random daily parking 
interval of vehicles which is a function of arrival and departure times. In this case, if the 
maximum required charging current exceeds the maximum circuit current, there is a 
probability that the vehicle may not be fully charged the next day when leaving to work 
since the model monitors the current drawn by the vehicles not to exceed the maximum 
circuit capacity. 

In the second case, Case II, a model which does not consider the parking interval is 
developed. In this case, vehicles are charged with a fixed power from the onboard 
battery charger every day and charging time interval is determined by the output power 
from the charger and the random daily energy requirement. If this charging interval is 
greater than the parking interval22, there is a probability that a driver may be delayed the 
next day to go to work or leave home with battery capacity which is not fully charged. 

5.2.2.1 Case I: Charge during parking interval 

In this model, vehicles are charged at home in the interval between daily arrival time 
from work and departure time to work next day. In other word, vehicles are charged in 
the parking interval at home during night. The power output from the charger will be 
determined by charging voltage level, parking interval and daily energy requirement. 
The step by step procedures, used to develop this model, are described as follow. 

 Step one 

The first step is to determine daily charging time or parking interval at home 

(  
       ) which is formulated as: 

  
         

 

      
           

                                                                          

  
            

                                                                       

  
          

                                                                                                  

               5-18 

Where: 

  
                                                            

  
                                                        

  
                                                          

                                                           
22

 The time interval between probabilistic daily arrival time on day (d) and departure time on day (d+1) 
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Note that all these parameters are probabilistic. 

 Step two 

The second step in this procedure will be to set the charging grid voltage level 

(      ), which is a charging voltage level for            of        . This is the 
available grid charging voltage which is to be set in the model as 230/400V, for 
example. 

 Step three 

The third step is to determine the charging current (        ). This is the amount of 
current that            of         draws on one specific charging      . 
This current value, along with the available voltage and energy requirement, will 

determine the required output power from the charger. This is calculated as: 

              
     

            

         
                                                                                   5-19 

Where: 

                                                         

     
                                                              

                                                      

  
                                                          

                                                 

Note that the calculate current is in ampere [A], provided that voltage is given in 
volt [v] and energy is given in [KWh]. This value is limited by the maximum 
current available,    [A], from the charging circuit. This means that for the given 

charging voltage level        and randomly determined daily energy 

requirement      
       

, if the charging interval is so small that the required 
charging current is higher than the maximum rating of the circuit, the charging 
circuit will limit the output current to its maximum value and the vehicle may 
depart partially charged the next day. 

 Step four 

Finally, the power output from the charger, which will determine the load profile of 

PEV charging,          of            of         on       is calculated as a 
function of voltage and current and is calculated as: 

                                                                                                               5-20 

Where: 

                                                        

                                                      

                                                         

Once the charging power level from the charger is determined, this is used to determine 
load profiles on the given charging interval and added to the load profiles of all the 
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vehicles in the system on the specific simulation time slot. Figure 5.5 below shows the 
flow chart of Case I residential charging model. 

As can be seen from the flow chart in Figure 5.5, the program starts by initialization. It 
starts by taking input from the user including total number of vehicle population in the 
study area, penetration level of PEVs, distribution of PEVs in each classes of vehicles, 
charging voltage and maximum available current from the charging circuit, battery 
capacities of vehicle classes, statistical arrival and departure time of vehicles from and 
to work respectively, statistical distribution of daily distance traveled by vehicles and the 
average grid energy required per km. These important parameters are the back bones 
of the model. They determine all aspects of the output from the charger. 

Following initialization, it will start processing these data as can be seen Figure 5.5. 
First, for the given total vehicle population and distribution of vehicles in each class in 
the study area, number of PEVs in each vehicle class is determined. Following this, per 
minute and hourly load profiles are generated for each vehicle for one week, based the 

input data. Note that this process is repeated a number of times, which is controlled by 
Monte Carlo loop to refine the result to a certain degree of confidence level. Note also 
that all important parameters are stored during the whole simulation and made available 
for processing after the simulation. Flow chart in Figure 5.6 illustrates the detailed steps, 
marked red in Figure 5.5, to generate load profiles for each vehicle population. 
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Figure 5.5: Residential slow charging, case I charger model flow chart 
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5.2.2.2 Case II: Fixed charging power output from residential charger 

As discussed in section 5.2.2, in this case all vehicles are charged with a fixed output 
power from on board charger every day. As a result, charging power level is set in the 
initialization phase. Since the power level is fixed, there is no need to worry about the 
current limit in the model. The assumption is that the circuit in which the charger is 
connected is capable of carrying the current demand. In this model, the charging time 
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interval is dictated by charging power level and energy required by vehicles. Except for 
these differences, other inputs are the same as that of Case I residential charging. 
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Figure 5.7: Residential slow charging, case II charger model flow chart  
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Figure 5.8 illustrates a flow chart for the detailed load profile generation for each 
vehicle, in each vehicles class for whole simulation time interval.  This flow chart is 
similar to that shown in Figure 5.6 for Case I residential charging with some differences. 
Their differences stem from the fixed charging power level for all day in Case II and 
daily variable charging power level in Case I. 
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Their similarity is that they both generate per minute and hourly average load profiles. 
To generate this result, they start by generating the battery capacity for a particular. 
Following this, they probabilistically generate the distance that vehicle travel on that 
specific day to calculate the remaining useable SOC level. If the calculated useable 
SOC is negative, this means that the vehicle has used up all the energy in the battery 
and used another alternative energy to finish the statistical distance for that day or it has 
recharged its battery outside home, may be at public charging station or at the fast 
charging station to finish this distance. Whatever may happen, the model doesn‟t 
consider the stated possibilities since clustering is not considered. In residential 
charging models, it assumed that vehicles charge only once per day at home. And 
hence, when useable SOC is negative, since SOC could never be negative, the model 
interprets this as if the vehicle arrived with zero useable SOC and it requires energy 
from the grid which is equivalent to its full useable battery capacity. At this point both 
models know how much grid energy is required to recharge that specific vehicle of 
specific class on that particular day. Next to this, both models calculates the arrival and 
departure time of the current day and next day based on „acceptance-rejection‟ 
techniques stated in section 5.2.2. The major differences of these two models start from 
this point onward. 

The model in Case I, shown in Figure 5.6 calculate the parking time interval of that 
particular vehicle by taking the difference between the arrival time and departure time of 
the vehicle as defined in equation 5-18 above. In addition to this, it will also calculate the 
charging power from the given charging voltage and the allowable charging current, 
which will define the demand of this particular vehicle at each minutes of the charging 
interval.  

On the other hand, Case II calculates the charging time interval by dividing the energy 
required for the day by the vehicle with charging power level. And then start charging 
the vehicle until the vehicle is fully charged.  At this point it is good to note that the 
charger will start charging just as the vehicle arrive from work and will continue charging 
until the battery is fully charged. In fact the model also has the capability for a delayed 
charging after arrival. 

5.2.3 Fast charging model 

This is the last and most important charging model. This model is used to charge 
vehicle at the fast charging station. This means, if we have fast charging station similar 
to petrol filling station, then this charger model can generate charging load profile at the 
fast charging station, which can later be used for system study. 

In the initialization phase, the model is similar to residential charging Case II (see 
section 5.2.2.2). However, there are two important differences between these models. 
These are charge starting time, which determines the shape of the load profile and 
charging power level.  Charging power level is much higher than residential case which 
is in an order of about 100 times higher. The second most important difference is the 
charging time distribution. As we recall from section 5.2.2.2, the charging time in 
residential charging Case II is dictated by the statistical daily arrival and departure time 
of vehicles from and to work respectively. Charging starts when vehicle arrive home 
from work where charge stating time is determined probabilistically based statistical 
data. Hence, charging time interval is determined by the available charging power and 
grid energy requirement of vehicles on that particular day. 

On the other hand, fast charging model of this section considers totally different timing 
approach. The charging time in this model is dependent on the statistical data obtained 
from petrol filling stations we have today in the market. Figure 5.9 shows a sample 
vehicle arrival time distribution at one petrol filing station. 
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Figure 5.9: Arrival time distribution of vehicle at petroleum filling station, Statoil 
Bärbyleden-Oppsala, Sweden 

This figure shows the percentage arrival time distribution of vehicle at Statoil 
Bärbyleden-Oppsala, petrol filing station. For example, if a total 500 vehicles arrive in 
this station on a particular day, 12% of them, i.e. 60 vehicles arrive in 16:00 and 17:00 
time interval as can be seen from Figure 5.9. This is an important dimension of this 
model. Vehicle arrival time distribution at given petrol filling station should be known for 
this model to work. This data will be used in the model to represent vehicles arrival time 
distribution at fast charging station which we assume is to replace this petrol filing 
station. In short, the main differences between the stated two models stems from this 
charging time distribution. 

This model starts by initializing vehicle arrival time distribution and other inputs like total 
number of vehicle arriving at the charging station in a particular day for that charging 
station, the penetration level of PEVs, the distribution of these vehicles among different 
classes, charging power level, ranges of battery capacities of vehicles arriving at the 
charging station, distribution of vehicles‟ daily distance travelled and grid energy 
requirement per unit distance. Figure 5.10 shows the detailed flow chart used. 
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Figure 5.10: Fast charging model flow chart 
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Just after taking the inputs to the model, the algorithm starts by calculating the number 
of vehicles from each vehicle class arriving at the charging station on each hours of the 
day. Similar to the other two models, this model also generates and stores per minute 
and hurly average load profile for a week, SOC distribution, distribution of daily distance 
traveled and other similar parameters. 

Generate Battery Capacity;          

Store BC 

Determine SOC 

Generate        , store it 

Calculate number of charging per day, n 

SOC=;                                      

Store SOC 

Count=1 

          

           
                 

Generate Grid energy 

Store            
        

 

 

Generate arrival minute 

Generate                        

Yes 
 

No 
 

  
                   

                    

         
                       

                 
           

          
       

 

Calculate charging interval and initial charging time in minute 

                           

Generate per minute load profile 
 

 

          
      

Yes 
 

Go to the 

next vehicle 

Generate load profile for each vehicle 

          

No 

 

Yes  

 

           
                              

Generate Grid energy 

Store            
         

Figure 5.11: Fast charging model flow chart, detailed load profile generation algorism 



Probabilistic Modeling of Plug-In Electric Vehicles Charging Impacts on Power Systems                            Page | 59  

 

What is unique about this model is that, unlike the two residential charging models, the 
vehicles in this model can charge more than once in a day at the fast charging station. 
The result of this is that we have distribution of daily number of charging times for 
vehicles. In addition to this, this model also generate the distribution required number of 
charging poles at fast charging station which is an important parameter for an 
economical optimization of number of charging poles at fast charging stations. Detailed 
analysis will be made in chapter six: simulation, Results and analysis. 

It is also important to see how the arrival minutes of vehicles in a given hour of the day 
are calculated as is shown in the detailed flow chart of fast charging model in Figure 
5.11. For all vehicles of different classes arriving at the charging station in a given hour 
of the day, a probabilistic arrival minute in that particular hour is generated to determine 
the minute at which the charging starts in the given hour of the day. 

5.3 Distribution system impact model 

As discussed in various sections earlier, the penetration of PEV in the power systems 

can have positive or negative impacts on the power system components. In general 
power system components like distribution cables and transformers are vulnerable to 
these overloads due to the penetration of PEV with the transformer being more 
susceptible to overloads. 

To evaluate the impact of added load due to PEVs on the system, it is necessary to 
model the distribution system components including distribution transformers and 
distribution service cables. Since we are concerned with quantifying the impacts the 
new loading of the system on the system components, it is expedient to use an electro-
thermal model of the constituent parts of this system. The electro-thermal model allows 
the computation of the temperature rise of the various components of the system and 
subsequent evaluation of the adequacy of the system and/or the evaluation of the risk of 
failure [5.4]. With knowledge of the currents in the transformer windings, the 
temperature of the windings can be calculated using a simplified first-order electro-
thermal model.  From the transformer windings temperature the hotspot temperature of 
the transformer, loss of life, and expected life can be calculated over a planning period. 

In this section impacts PEV charging on distribution transformer will be quantified with 
electro-thermal model. The procedure which is used to quantify transformer impacts in 
terms of Loss of Life (LOL) is based on ANSI/IEEE C57.91-198 model. The corner 

stone of this algorithm is to first determine the hot spot temperature of transformer 
winding and then to translate this into equivalent LOL of the transformer based on the 
standard given in ANSI/IEEE C57.91-198 [5.5].  

5.3.1 ANSI/IEEE C57.91-1981 Based Impact model 

This model translates hourly loading of a transformer into expected lifetime. According 
to this model, the calculation of transformer aging includes two steps. These are:- 

 Estimating hot spot temperature,    

 Translating    into transformer loss of life 

The first step is to estimate the temperature of the hottest point within the transformer 
(the “hotspot” temperature,  ) for each hour in the interval of study. The hotspot 
temperature is a function of ambient temperatures and transformer loading [5.5]. 

The second step involves translating     into a measure of transformer aging. Once the 
hotspot temperature is estimated, IEEE Standard C57.91 [5.5] provides a function for 

translating hotspot temperature into an accelerated aging factor (   ), which can be 
used to estimate the loss in transformer life that can result from higher temperatures 
and heavy loading. 



Probabilistic Modeling of Plug-In Electric Vehicles Charging Impacts on Power Systems                            Page | 60  

 

5.3.2  Estimating the winding hot spot temperature  

To calculate the winging hotspot temperature,   , the following procedures are used: 

 First, thermal time constants for the transformer oil (   ) and windings (   ) are 
calculated. Both represent the thermal inertia of the transformers. Given the 

weight of the transformer (  , in lbs.), the gallons of oil in the transformer (  ), 
the temperature rise of the top-oil above ambient at rated load (      ) and the 

power losses at rated load (    ), thermal time constants for the transformer oil 

(   ) can be calculated as: 

    
                      

    
                                                                                   5-21 

This equation is a minor simplification of the equation for     given in IEEE 
C57.91 [5.5], which provides a method for calculating a time-varying time 
constant. The approximation is appropriate for small time steps, which is one 
hour in our case. IEEE C57.91 does not provide a method for calculating the 

winding time constant. Following [5.4] and [5.6], the winding time constant      is 

assumed to be small (        )  

 Second, the initial temperature gradients of transformer oil over ambient and 
hotspot over transformer oil have to be calculated in order to determine the 
hotspot temperature. The following equations calculate the initial temperature 
gradient of oil over ambient and hotspot over oil respectively for transformers: 

                                                                                                        5-22 
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Where: 

                                                                    

                                                                  

                                              

                                         

                               

                              

                                 

                                                                      

 The third step is to calculate temperature gradients for each hour. To calculate 
the hot spot temperature for each hour, hourly temperature increase of top-oil 
above ambient temperature (      ) and hourly temperature increase of hotspot 

above top-oil temperature (     ) has to be calculated as follow: 
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Where:  
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 The last step is to calculate the hotspot temperature with the results from the 
preceding two steps. From this the hourly hotspot temperature is defined as: 

                                                                                                   5-27 

       

     hotspot temperature of the transformer at hour h 
                                                                                      

                                                                                      

                                

5.3.3 Calculating Transformer Loss of Life (LOL) 

Given the winding hot spot temperature      , IEEE C57.91 specifies that the following 

formula can be used to estimate per unit accelerated aging (   ) of a transformer as: 

           
      

   
    

  
                                                                               5-28 

Where B is a constant given as 15,000 in [5.4], [5.6] and         is the rated maximum 

hot spot temperature and      is the hotspot temperature at hour h for the transformer 

from 5-27. 

The following equation allows us to estimate the change in expected life due to thermal 
loading at PEV penetration level      over a one-year period: 
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Where: 
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6 CHAPTER SIX: SIMULATION, RESULTS AND ANALYSIS 

6.1 Fast charging  

Fast charging is one of an important part of this thesis. In this section the probabilistic 
fast charging model developed in chapter five is simulated and the resulting outputs are 
discussed. In chapter five a number of probabilistic parameters were defined which 
dictate the output from the models. Among these are distribution of daily distance 
travelled, arrival time distribution of vehicles at the fast charging stations and distribution 
of vehicles battery capacities in the defined ranges. In order to illustrate the power of 
probabilistic model compared with deterministic model, four different cases are defined. 
The following subsections will have a closer look at each scenarios and a number of 
outputs generated from the models.  

6.1.1 Fast charging stations 

 

Figure 6.1: Assumed distribution of fast charging stations in the selected area of 
study 

Figure 6.1 illustrates the primary distribution network implemented in DIgSILENT Power 
Factory23 where the impacts of fast charging stations are investigated. Note that there is 
another secondary distribution system in this primary distribution network indicated by 

                                                           
23

 DigSilent Power Factory is a power system simulation tool used in the project  
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big arrow which illustrates „Allmogeplatsen‟ secondary distribution network shown in 
Figure 6.41. All the load feeders indicated in this distribution network has its own base 
load profile that are generated in section 5.1.4. 

As can be seen from the Figure 6.1, three fast charging stations are randomly installed 
in the distribution network. The charging power level from each charging poles at these 
charging stations are assumed to be 250KW, which is available from ABB fast charger 
illustrated in Figure 3.11. The number of charging poles at the charging station is not 
fixed. This is made purposely to have its distribution from the simulation which will intern 
help to optimize the required number of poles at the charging station. This will be 
illustrated in the upcoming sections. 

6.1.2 Common inputs to all cases 

One of the most important inputs to this model is vehicle arrival time distribution at each 
fast charging station. Figure 6.2 illustrates arrival time distribution of vehicles at each 
fast charging station, which is assumed to be the same for all charging stations. It is 

also assumed that a total of 450 vehicles arrive at each charging station every day, 
distributed in time, as shown in the Figure 6.2 below. 

  

Figure 6.2: Vehicle arrival time distribution at fast charging stations 

It is good to see that out of 450 vehicles arriving at the fast charging station in a given 
day, 46 of these vehicles arrive in the time interval between 08:00 and 09:00. This 
means that if all these vehicles are to start charging at the same, as in Case I, 46 
charging poles are needed which will intern result in total power demand of 11.5MW. 

Note also that this arrival time distribution is adapted from a statistical data which 
represent vehicle arrival time distribution at Statoil Bärbyleden-Oppsala petrol filing 
station, as is given in Figure 5.9. It is assumed that vehicle arrival time distribution at the 
fast charging station is the same as vehicle arrival time distribution at this petrol station. 

Apart from this, it is also assumed that each vehicles charging at fast charging station 
require 0.2KWh energy for each km distance and all vehicles arrive at the charging 
station with a minimum SOC level of 10% and charged up 80% SOC (refer section 4.3.3 
for allowable SOC limits). 

6.1.3 Case I: All deterministic approach 

6.1.3.1 Scenario definition 

As stated before, there are three major random variables considered to define the 
cases. These are distribution of vehicle distance travelled, vehicle arrival time 
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distribution at the fast charging stations and distribution of vehicles battery capacities. In 
this case all these random variables are assumed to be deterministic. 

First, it is assumed that that all vehicles arriving at the fast charging station have a total 
battery capacity of 16KWh which represents battery capacity of i MiEV24 (refer Table 
4.3 for a list vehicle battery capacities from different manufacturers). This will limit the 
distance the vehicle travel on a given day. With the assumed range of useable SOC, 
only 70% of the battery capacity is useable which enable the vehicle to travel only 
40miles of distance assuming that 0.2KWh energy is required for every km distance 
travelled. Each vehicles are assumed to be charged only once at the charging station 
per day. Finally, this case assumes that all the vehicles arriving at the charging station 
in a given hour of the day start charging at the same time. The following subsections 
illustrate a number of outputs generated from the model based on the defined 
scenarios. 

6.1.3.2 Output from the model 

Figure 6.3 below shows per minute load profile from PEV charging, for one week at 
250KW charging power level for the scenario defined in Case I. Note that this load 
profile is generated for one fast charging station only. The other two charging stations 
will have the same load profiles. Figure 6.4 shows the per minute load profile for one 
day. As can be seen from this figure, there is a high power demand of about 14MW in 
the time interval between 16:00 to 17:00. This high power demand is because of the 
deterministic assumptions made. In this time interval the total number of vehicles 
arriving in the fast charging station is 55 vehicles, as can be seen from Figure 6.2. If all 
vehicles arrive at the fast charging station just at the beginning of 16:00, for example, 
and start charging at the same time, this will result in a total power demand of 
13.75MW. This result is the worst case scenario. However, the probability that all 
vehicles arriving at the charging station in a given hour start charging at the same time 
is very small. This is one of the main problems with the deterministic approach to model 
impacts of PEV charging on the power systems. All the parameters which determine the 
nature of the load profile including arrival minute distribution, the battery capacity, 
distance traveled, battery SOC level are all assumed to deterministic in this case, which 
resulted in the unacceptable result which may lead to a wrong conclusion. 

 

Figure 6.3: Per minute load profile for a week, PEV fast charging at 250KW 
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Remember that each vehicle arrive at the charging station with 10% SOC and charged 
up to 80% SOC. This means that only 70% of 16KWh energy is required from the 
charging station. The vehicles need to wait only 2.7minute to get this energy at 250KW 
charging power level. 

 

Figure 6.4: Per minute load profile for a day of the week, PEV fast charging at 
250KW 

The jump in power from 0MW to 14MW demand last only for 2.7minutes. This means 
that the charging station will be idle for the next 57.3 minutes of that hour. This is 
unrealistic which again shows the drawback in deterministic approach to model PEV 
fast charging. 

The peaks in per minute load profiles seen in the preceding figures are very high. If we 
take hourly average load profile in each hours of the week, the peaks in the resulting 
load profile will very low. Averaged hourly load profiles at each charging stations are 
shown in Figure 6.5 and Figure 6.6. 

 

Figure 6.5: Per hour load profile for a week, PEV fast charging at 250KW 
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Figure 6.6: Per hour load profile of a day of the week, PEV fast charging at 250KW  

Figure 6.5 shows hourly load profile for a week whereas Figure 6.6 shows per hour load 
profile of the first day in the week. As can be seen from these figures, the maximum 
power of 13.75MW seen in the per minute load profile dropped down to 0.9MW peak in 
an hourly load profile. This is mainly because the station is idle for most time of a given 
hour in a day. 

It is also important to note two load profiles imbedded in each figures shown in Figure 
6.3, Figure 6.4, Figure 6.5 and Figure 6.6 as shown by legends. One is an 
instantaneous load profile and the other is average load profile. The instantaneous load 
profile is the result of single simulation. On the other hand, the average load profile is 
generated using Monte Carlo simulation where the model is simulated a number of 
times and results are averaged to boost confidence in the probabilistic simulation. 
However, since all the parameters in this scenario are deterministic, the two results are 
the same and only average load profile is seen overlapped on instantaneous load 
profile. 

As stated in the scenario definition, the number of charging poles at the charging station 
is not fixed. In contrast to some earlier studies, this model follows the other way round. 
Rather than fixing the number of charging poles, it is good to find the distribution of 
required number of charging poles at the fast charging station from which an 
economical decision can be made. Figure 6.7 shows the distribution of required number 
of charging poles at the fast charging station. 

 

Figure 6.7: Distribution of required number of charging poles at fast charging 
stations 
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As can be seen from this figure, only 1.15 charging pole is required for 94.8% of the 
day. However there is some time in a day where 55 charging poles are required. 
Remember that the required number of charging poles depend on the number of 
vehicles arriving at the charging station in a given hour. It is totally uneconomical to 
have 55 charging poles at the fast charging station, which again shows the incapability 
of deterministic approach in drawing a better picture of required infrastructure at the fast 
charging stations. 

6.1.3.3 Distribution system impact 

In this section the impacts of PEV fast charging on the system bus voltage is discussed. 
To help us realizes differences with base voltage profiles, Figure 6.8 and Figure 6.9 
illustrates the system base voltage profiles resulting from both per minute and per hour 
base load profiles. As can be seen from the two figures, the system is operating well 
within the voltage limit, i.e. ±0.05 per unit voltage before the deployment of fast charging 
stations shown in Figure 6.1. 

 

Figure 6.8: Voltage profile in the primary distribution network due to per minute 
and hourly base load profiles for one day 

  

Figure 6.9: Voltage profiles in the secondary distribution network due to per 
minute and hourly load profiles 
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If the three fast charging stations are deployed in the distribution system, the result from 
Case I fast charging model can seriously affect the system voltage profiles. Figure 6.10 
and Figure 6.11 illustrates the system voltage profiles resulting from the deployment of 
three fast charging stations where vehicles at these stations are all charged according 
to scenarios defined in Case I. Per hour voltage profiles illustrate the resulting voltage 
profiles when per hour load profiles are applied to the system whereas per minute 
voltage profiles shows the result of application of per minute load profiles in the system. 
As can be seen from the figures, the system voltages have gone down below an 
acceptable limit. It is good to see that there are no significant differences with per hour 
voltage profiles compared with base case. But, when it comes to per minute voltage, 
there are times in a day when bus voltages drop below 0.7pu. This is totally 
unacceptable. And once more this shows the problem in the deterministic approach to 
model the impacts PEV charging on the power system. What we see from these figures 
are the worst case scenarios. 

 

Figure 6.10: Voltage profiles in the primary distribution network resulting from the 
deployment of three fast charging stations 

 

Figure 6.11: Voltage profiles in the secondary distribution network resulting from 
the deployment of three fast charging stations 
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6.1.4 Case II: Stochastic-Deterministic 

6.1.4.1 Scenario definition 

Similar to the scenario defied in Case I, there are three main parameters which dictated 
the output from this model. These are the battery capacity, arrival time distribution and 
distribution of daily distance travelled by vehicles. The first two parameters are made 
deterministic as in Case I and distribution of daily distance traveled is made 
probabilistic. 

Similar to Case I, battery capacities of all vehicles in this simulation are assumed to 
fixed to represent the battery capacity of „i MiEV’ pure electric vehicle from Mitsubishi 
which has a total battery capacity of 16KWh25. Taking the arrival time distribution of 
vehicles at charging station given in Figure 6.2, it is assumed that all vehicles that arrive 
at the charging station in a given hour start charging at the same time. The duration of 
charging will be determined by the charging power level and the required energy from 
the grid which is a function of daily distance travelled and SOC level. 

Distribution of daily vehicle distance travelled is the only random variable in this model. 
Its value depends on statistics. The statistical daily distance distribution for PEVs is 
taken from [6.1]. According this study the driving pattern studies in USA showed that in 
average vehicles traveled 12000 miles per year. Out of all the vehicles 50% of them 
travelled 25 miles or less per day and 78% of these traveled 45 miles per day or less. 
This statistics also showed that on average all vehicles travelled 32 miles per day. 

This statistical data is one source of randomness in the model. Hence the model is 
simulated to satisfy this requirement. The probabilistic distribution of daily distance 
travelled will in turn affect the vehicle‟s daily energy requirement, SOC distribution, 
charging interval distribution and other important parameters. It is important to note at 
this point that daily energy requirement, SOC level and charging interval are all 
probabilistic and they will have their own distribution as will be evident soon. 

6.1.4.2 Output from the model 

 

Figure 6.12: Per minute load profile for a week, PEV fast charging at 250KW 
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Figure 6.12 shows the per minute load profile of PEVs at one of the fast charging station 
for one week for the scenario defined in Case II. Whereas Figure 6.13 shows per minute 
load profile of the first day of the week given in Figure 6.12 above. 

 

Figure 6.13: Per minute load profile for a day of the week, PEV fast charging at 
250KW 

It is important to see two important differences between the per minute load profiles of 
Case I and Case II. The first one is the difference between non Monte Carlo 
instantaneous per minute load profile and Monte Car averaged load profiles. As can be 
seen from the figures, there is a slight difference between non Monte Carlo load profile 
shown in red and Monte Carlo load profile shown in blue. The second important 
difference is the peak power in the per minute load profiles. In Case I, the maximum 
power observed was about 14MW whereas in Case II the maximum power is near 
20MW, which is a difference of 6MW compared with Case I. 

As we recall from the scenario definition of Case I, the vehicle travel a fixed distance of 
40miles where as the daily distance distribution in Case II is governed by the statistical 
distribution defined in the scenario. The distribution daily distance traveled generated in 
the model is shown in Figure 6.14  below. 

  

Figure 6.14: Simulated distribution of daily distance travelled used in the model 
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The distribution of simulated distance travelled generated in the model shows the match 
between the simulation and the given statistical data. As can be seen from Figure 6.14 
above, about 80% of the vehicles travel 40miles or less and about 58% of the vehicles 
travel 30 miles or less. At the same time, the simulated vehicles in this scenario travel 
about 12,019 miles annual distance travelled and average of 32.87 miles covered in a 
day. This is one of the factors for the difference seen between the two cases as the 
daily distance travelled is totally probabilistic. 

It is also evident from the scenario definition of Case I that all vehicles visit the charging 
station only once per day. However in Case II, a given vehicle can visit the charging 
station more than once as long as it needs more energy to cover its daily distance. As 
we discussed earlier, the driver can travel only 40miles with the full useable battery 
capacity. However as can be seen from the probabilistic distribution of vehicle distance 
travelled in Figure 6.14 above, there are some vehicles which travel more than 100 
miles in a day. This makes the vehicle to come to charging station more than once to 
recharge their battery or use another alternative energy source to cover the remaining 
distance or park the vehicle. But the model assumes that vehicles can visit the charging 
station more than once to recharge its battery to cover the last remaining distance. 
Figure 6.15 below show the probabilistic distribution of the number of times the vehicles 
come to charging station to recharge their batteries. 

    

Figure 6.15: Probabilistic distribution of required number of charging per vehicle 
per day 
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0.5% came four times per day out of the total number vehicles arriving at the charging 
station in a given day which is 450 in this case. This is the second important factor that 
made the peak to rise in Case II. 

Considering the average per hour load profiles at the fast charging stations, the results 
from Case I and II are almost similar as can be seen from Figure 6.16 and Figure 6.17 
below. 
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Figure 6.16: Per hour load profile for a week, PEV fast charging at 250KW 

 

Figure 6.17: Per hour load profile for a day of the week, PEV fast charging at 
250KW 

As can be seen from Figure 6.16 and Figure 6.17, there is no significant difference in 
hourly load profiles generated in Case II and that seen in Case I, especially if we 
compare the average peak power in the two cases. One difference is the difference 

between non Monte Carlo instantaneous result and Monte Carlo average result. This 
difference resulted in from the probabilistic distribution of daily distance travelled. 

The other important distinction between Case I and II is the distribution of SOC level of 
the batteries. As we recall from Case I, vehicles came to the fast charging station with a 
fixed SOC of 10% whereas the SOC levels of vehicles coming to charging station in 
Case II are probabilistically distributed as a function of daily distance traveled. In case 
two, it assumed that vehicles can get as much energy as they need from the grid any 
time. Hence at the end of the day there is a probability that some amount of energy is 
left in the battery for the next day.  Figure 6.18 shows the distribution energy left in the 
battery at the end of the day to be used the next day. This is what we call it SOC 
distribution of vehicles. 
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Figure 6.18: Distribution of SOC levels 

As can be seen from Figure 6.18, about 31.5% the vehicles come to charging station 
with the SOC level of about 11.5%, which just above the minimum and about 2.3% the 
vehicles come with an OSC level of 78.5%. The rest of the vehicles come to the 
charging station with an SOC level in between this range as can be seen from the 
distribution. 

The SOC levels of vehicles coming to the charging station will determine how long it 
takes to fully recharge the battery. In other word, since all the vehicles have the same 
battery capacity, the charging time needed for each vehicle at the fast charging station 
is a function of its SOC level. Figure 6.19 shows the probabilistic distribution of required 
charging time. 

 

Figure 6.19: PEV charging time interval distribution  
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As can be seen from this figure, about 31.5% the vehicles charge in about 2.63minutes 
and about 2.41% the vehicles charge their battery in about 3.3second. The remaining 
vehicles can fully charge their vehicles in between these intervals. At this point it is 
important to see the inverse relationship between vehicle charging time and SOC; the 
higher the SOC level the less time required to recharge the vehicles and vice versa.  

The last important thing to note is to compare the distribution of required number of 
charging poles at charging stations in Case I and II. If we have a look at the distribution 
of required number of charging poles at the charging stations shown in Figure 6.7 and 
Figure 6.20, we have increased number charging poles in Case II than in Case I. In 
Case I the maximum required number pole was 55 while in Case II, the maximum 
required number of pole is 85 as can be seen the figures. This is because of  the same 
reason stated above that a given vehicle can come more than once per day that will 
increase the number of vehicles at the charging station in a given hour of a day. 

 

Figure 6.20: Distribution of required number of charging poles at the charging 
station 

Notice that, a close look at the results in Figure 6.7 and Figure 6.20 reveals that the 
time at which vehicles start charging determines the required number of charging poles 
at the fast charging station. In both case I and II, the underlying assumption was that all 
vehicles arriving at the charging station in a given hour of a day start charging at the 
same time. This is not realistic and as we stated earlier the probability that all the 
vehicles in the given hour arrive at the same time is less probable. Hence this kind of 
deterministic assumption on the vehicle arrival time leads to a wrong conclusion. 
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vehicles are charged according to scenarios defined in Case II. As can be seen from the 
figures, there is some time in a day where bus voltage drop below 0.6pu. This is more 
serious than Case I charging model. This mainly because of increased power demand 
from vehicles due to increased number of charging per day resulting from increased 
daily distance travelled.  

 

Figure 6.21: Bus voltage profiles in the primary distribution network resulting 
from the deployment of three fast charging stations 

 

Figure 6.22: Bus voltage profiles in the secondary distribution system resulting 
from the deployment of three fast charging stations 
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6.1.5 Case III: Stochastic-Deterministic 

6.1.5.1 Scenario definition 

Similar to the scenarios defied in Case I and II, the total battery capacity of all the 
vehicles in the simulation are assumed fixed to 16KWh, which is a represent the battery 
capacity of „i MiEV’ pure electric vehicle from Mitsubishi. 

In addition to this, the distribution of daily distance by each vehicle assumed to be that 
defined for Case II. This is probabilistically distributed statistical distance. The statistical 
daily distance distribution for PEVs is taken from [6.1]. According this study the driving 
pattern studies in USA showed that in average vehicles traveled 12000 miles per year. 
Out of all the vehicles 50% of them travelled 25 miles or less per day and 78% of these 
traveled 45 miles per day or less. This statistics also showed that on average all 
vehicles travelled 32 miles per day. 

The most important probabilistic parameter that distinguishes Case III from the other 

two cases discussed above is the distribution of arrival minute distribution. As we 
discussed it before, we know the distribution of vehicles arrival time at charging station 
in each hours of the day as illustrated in Figure 6.2.For example, we know the number 
of PEVs arriving at the fast charging station between 08:00 and 09:00. As is shown in 
Figure 6.2, 46 vehicles arrive at the fast charging station in this interval. It not 
appropriate to assume all 46 vehicles arrive at the fast charging station at the same 
time, this is not probable. What is most important is to know that vehicles can arrive at 
the charging station at any minutes in that time interval. Hence normally distributed 
arrival minute of vehicles in a given hour is assumed. This is what we called it vehicles 
„arrival minute distribution‟ in a given hour. This important point is considered in this 
case that exponentially changed the output from the model as will be illustrated soon. 
This is a better realistic approach and shows the power of probabilistic to model PEV 
charging at the fast charging stations. 

6.1.5.2 Output from the model 

 

Figure 6.23: Per minute load profile for a week, PEV fast charging at 250KW 
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Figure 6.24: Per minute load profile for a day in the week, PEV fast charging at 
250KW 

Figure 6.23 and Figure 6.24 shows per minute load profiles for a week and per minute 
load profiles of the first day in the week respectively. There are two important things to 
note from these results. The first one is the peak power of the load profile. As can be 
seen from Figure 6.23, the maximum power demand in the week from one fast charging 
station is 2.5MW and the average peak power is about 1.4MW. If we compare this with 
the maximum power demand defined in Case II and shown in Figure 6.12 which is more 
than 20MW, we can see a significant difference between the two cases. The maximum 
power demand generated from the fast charging stations in Case III in a week is about 
ten times less than that generated in Case II. This sounds logical and feels realistic and 
is indeed an important tool for a professional decision. This again shows the power of 
probabilistic approach to model the impacts PEV fast charging on the power systems. 

The second important difference to note is non Monte Carlo instantaneous load profile 
and averaged Monte Carlo load profiles. As the number random variables increases in 
the model, the result from the simulation varies every time we run the simulation. Hence 
that is why we see the deference between load profile generated from single simulation 
and that generated from a number of simulations with a Monte Carlo simulation. Monte 
Carlo simulation is used to run the model a number of times and generate the average 
load profiles from the results. 

Figure 6.25 and Figure 6.26 shows per hour load profiles for a week and a day in the 
week. As can be seen from these figures, the load profiles are similar with that shown in 
Case II. This is because the number of vehicles arriving at the fast charging station in a 
given hours of a day are the same. Plus, the distribution of daily distance travelled by 
each vehicle is similar. The only difference is the charging intervals. In Case II vehicles 
start charging at same time whereas in Case III the charging intervals are 
probabilistically distributed. This doesn‟t make significant change on average power in 
that interval of time but it does affect per minute load profile significantly as illustrated in 
the figures. 
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Figure 6.25: Per hour load profile foe a week, PEV fast charging at 250KW 

 

Figure 6.26: Per hour load profile for a day in the week, PEV fast charging at 
250KW 
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Figure 6.27: Distribution of distance traveled, SOC, charging interval and required 
number of charging per vehicles per day 

Figure 6.27 illustrates probabilistic distribution of daily distance traveled, distribution of 
SOC levels, distribution of charging time interval and distribution of number of charging 
per vehicles per day. These distributions are similar to the corresponding distributions 
shown in Case II. The reason behind this is the daily distance travelled. We know that 
distribution of daily distance travelled for both cases is taken from statistical data which 
is the same. And as we made it clear before, vehicle‟s SOC level is a function of daily 
distance travelled provided that the battery capacity is fixed as in our case. And we 
have also discussed that required charging time is inversely proportional to battery SOC 
level and the required number of charging per day is also a function of daily distance 
travelled. These are the main source of similarities between the results in the two cases. 

However there is one exceptional and important difference between Case II and Case 
III as can be seen in Figure 6.28. This is the distribution of required number of charging 
poles at fast charging stations. 
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Figure 6.28: Distribution of required number of poles at fast charging stations 

As can be seen from Figure 6.28, the decline in the required number of charging poles 
at the charging station is amazing. Figure 6.20 shows that a maximum of 85 required 
charging poles if all vehicles are to charge on arrival in Case II. This can be compared 
with a maximum of 10 charging poles in Case III if all the vehicles are to start charging 
on arrival. AS a result, an economical decision on the required number of charging 
poles at the fast charging stations can be made based on the distribution shown in 
Figure 6.28. For example, if we decided to have only four charging poles at each fast 
charging station defined in Figure 6.1, 95.54% of vehicles can be charged on arrival. 
Only 4.46% of vehicles out of 450, in our case, have to wait for some time. Similar 
conclusion can be drawn if we decide to have one, two three or any other number of 
charging poles as can seen from Figure 6.28. This is the beauty of probabilistic 
modeling. That is why we did not fix the required number of charging poles at the fast 
charging station. An important economic decision can be made based on the 
distribution of required charging poles as we have just seen. 

6.1.5.3 Distribution system impact 

Figure 6.29 and Figure 6.30 illustrates system bus voltage profiles, at both primary and 
secondary distribution level, resulting from the deployment of three fast charging 
stations. This is a more realistic voltage profile as it is the result Case III PEV charging 
model which is a more acceptable model. As can be seen from the figures, the voltage 
hardly drops below 0.9pu in the primary distribution. Almost all system voltages are 
above 0.9pu in the secondary distribution network. 
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Figure 6.29: Bus voltage profiles of primary distribution network resulting from 
the deployment of three fast charging stations 

 

Figure 6.30: Bus voltage profiles in the secondary distribution network resulting 
from the deployment of three fast charging stations 
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6.1.6 Case IV: All Stochastic 

6.1.6.1 Scenario definition 

From Case III, we have seen the capability of probabilistic model in drawing a better 
picture of PEV fast charging and their impacts on power systems with a fixed battery 
capacity, probabilistically distributed daily distance traveled and arrival minute 
distribution. This case, Case IV, is an extension of Case III which includes more 
varieties of vehicles coming to the charging stations. This is to say in the preceding 
three defined cases, all vehicles coming to the charging station have identical battery 
capacity. But now in Case IV, we wanted to incorporate classes of vehicles which have 
ranges of battery capacities that can represent wider classes of PEVs which are on the 
market today. The model distinguishes these classes of vehicles based on their battery 
capacities.  

This model assumes the same distribution daily distance travelled and arrival minute 
distribution as was done in Case III. It introduces the third random variable to 
incorporate wider ranges of vehicles in the simulation to have a better feeling of their 
impacts on the power system. This third random parameter is vehicle‟s battery 
capacities. Table 6.1 shows the defined range of battery capacities for each class based 
on data given in Table 4.3 and Table 9.5. 

The battery capacities of fully electric vehicles today on the market ranges from 8.4KWh 
of ATX from ALKE and 55.00KWh of Roadster of TESLA as illustrated in Table 4.3. 
Hence this scenario defines four ranges of battery capacities, as shown in Table 6.1, to 
represent vehicle class defined in Table 5.1. 

Table 6.1: Distribution of vehicles battery capacities 

 to represent classes of vehicles 

Class      
              

         

1 20 10 

2 30 20 

3 40 30 

4 50 40 

6.1.6.2 Output from the model 

Figure 6.31 and Figure 6.32 shows per minute load profiles of PEV fast charging at 
250KW for a week and first day of the week respectively. As can be seen from the 
figures, there is no significant increase in the per minute peak load profile compared 
with that shown in Figure 6.23 and Figure 6.24 of Case III. This is because the charging 
power levels in both cases are the same. The only difference between the two cases is 
the increases of the battery capacity in Case IV. 
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Figure 6.31: Per minute load profile for a week, PEV fast charging at 250KW 

 

Figure 6.32: Per minute load profile for a day in the week, PEV fast charging at 
250KW 
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Figure 6.33: Per hour load profile for a week, PEV fast charging at 250KW 

 

Figure 6.34: Per hour load profile for a day in the week, PEV fast charging at 
250KW  

Figure 6.33 and Figure 6.34 shows per hour load profiles for a week and the first day of the 

week respectively. Compared with the results shown in Figure 6.25 and Figure 6.26 of Case 

III, the results are almost the same since daily energy requirement by each vehicle, which is a 

function of daily distance traveled, is not changed. However, if compare per minute load profiles 

in Case III and Case IV, we can seen a reduction in the concentration of peak power in Case IV. 

This is mainly because as a result increased battery capacities, the number of times that  

vehicles come to the fast charging station to recharge their batteries is reduced as can be seen 

in Figure 6.37. 

The distribution of daily distance travelled in Case IV is similar to that shown in Figure 
6.14 and Figure 6.27 for Case II and III respectively. This is because there is no change 
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of Case II and III. However there is a change in the distribution of SOC and distribution 
charging time interval as shown in Figure 6.35. 

 

Figure 6.35: Distribution of SOC and charging time interval, PEV fast charging at 
250KW 

As can be seen from Figure 6.35, the charging time interval has increased to the 
maximum value of about 8 minute. This is mainly because of distribution of increased 
battery capacities introduced in Case IV. However, in average the charging time is still 
about 2 minutes. The distribution of battery capacities used in the model, that made 
these parameters to vary, is shown in Figure 6.36. 

 

Figure 6.36: Distribution of battery capacities used in the model, PEV fast 
charging at 250KW 
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out of total can be charged on arrival in Case IV compared to 95.54% of Case III. From 
this we can see that as the battery capacity increases, the charging poles that we need 
at the charging stations need to grow with it since increased battery capacity increases 
charging time intervals, if vehicles are to charge on arrival. 

In addition to this, Figure 6.37 also shows that the required number of charging per 
vehicle per day is almost the same as that of Case III with a maximum value of 8 times 
per day. 

 

Figure 6.37: Distribution required number of poles and required number of 
charging per day per vehicles 
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Figure 6.38: Bus voltage profiles in the primary distribution network due the 
deployment of three fast charging stations 

 

Figure 6.39: Bus voltage profiles in the secondary distribution network due to the 
deployment of three fast charging stations in the system 
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only for a short interval of time estimated in minutes. As a result, energy storage 
devices, which can provide high power during a short interval of time, are important to 
be installed at the fast charging stations. The installed high power energy carriers can 
dump their energy, stored during light load, during a high demand time to save the 
system from voltage dip. Figure 4.4 illustrates a number of energy carriers that can 
provide high power during a short interval time. Among these energy carriers are 
advanced flywheels and ultracapacitors. If, for example, we have an advanced flywheel 
in the vicinity of fast charging station that can store energy during the light load period, 
we can use this energy during high demand times at the charging station to save the 
system from voltage deep. 

The question will be how to size the energy storage capacity to be used. This is a tricky 
question to answer. However knowing the length of the day during which the voltage 
drops below the allowable limit can give us a good initial gauss on the size of energy 
storage device. The duration of voltage dip throughout the day varies from bus to bus. 
Figure 6.40 shows the percentage time distribution of voltage dip at one of the bus in 
the primary distribution network. As can be seen from this figure, the bus voltage at this 
location is above 0.95pu for about 76.85% of the day. The voltage of this specific bus 
drops below the limit only for 23.18% of the day as can be seen from Figure 6.40. This 
is just one way to have a good initial gauss on the optimum size of storage device at 
fast charging stations. Further study is needed to establish the relationship between the 
size of energy storage devices and voltage dip in the distribution network. 

 

Figure 6.40: Duration of voltage dips at Bus Load (1) in the primary distribution 
network 
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6.3 Residential charging  

6.3.1 Selected region of study 

 

Figure 6.41: Selected residential charging area 

Figure 6.41 illustrates the area selected for residential charging where PEVs are to be 
deployed. It shows the secondary distribution network demonstrated in Figure 4.3. This 
network is characterized by different groups of customers at each load feeders. This 
consists of residential, commercial and mixed types. There are two distribution 
transformers in this distribution network which steps down voltage from 11KV to 400V. 
Each transformers supply both residential, commercial and mixed load types. 

There are two primary objectives of this section. The first one is to demonstrate some 
important results from both Case I and Case II residential charging models including 
distribution of battery capacities, daily distance travelled, arrival and departure times, 
SOC and charging times. The second important objective is to illustrate the impacts of 
residential charging on the distribution transformer loading and transformer loss of life. 

6.3.2 Common inputs to the models 

The first two important common input parameters are the total number vehicle 
population in the selected residential area and penetration levels of PEVs. For this 
particular study, a total of 450 total vehicle population and different penetration levels of 
PEVs out of the total including 10%, 25%, 50%, 75% and 100% are all considered. It is 
also assumed that, based on number of residential houses on each transformers, 180 
vehicles are distributed on transformer 1(T1-1311-11 kV/0.42 V 800 kVA) and the 
remaining 270 vehicles distributed on transformer 2(T2-1310 - 11 kV/0.42 V 800 kVA). 

Similar to fast charging models discussed in the preceding section, there are three 
important probabilistic parameters which dictate the output from the residential charging 
models. These are distribution of vehicle battery capacities, daily distance travelled and 
arrival time distribution. 

The first two parameters, distribution of battery capacities and daily distance travelled, 
are assumed to be the same as that used in Case IV of fast charging model. What is 
unique in the residential charging models is the arrival time distribution.  Table 6.2 
illustrates distribution of arrival and departure time of vehicles from and to work 
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respectively. As can be seen from this table, arrival and departure times of vehicles are 
expressed in terms of mean and variance departure and arrival time for both weekdays 
and weekend. 

Table 6.2: Statistical distribution of daily arrival and departure time of vehicles 

 Departure Arrival 

Paramete
r 

Weekda
y 

Weeken
d 

Weekda
y 

Weeken
d 

  
    7 9 18 15 

   
    

 
 3 6 3 6 

Residential charging model is built on the basis that all the vehicles in the simulation are 
charged at home when they come back home from work every day and charging will 
commence on arrival from work26. It is important to note that residential charging may 
not necessarily mean charging during night time. It is a probabilistic term. The vehicle 
can charge at home as long as it is parked at home. The parking time of vehicle at 
home is probabilistic and depends on the data given in Table 6.2. 

In the following subsections, outputs from two residential charging models and their 
impacts on the distribution transformer will be discussed. The two models, Case I and 
Case II residential charging models mainly differ on the available residential charging 
power level to charge PEVs at home. 

6.3.3 Case I: Charge on parking interval 

6.3.3.1 Scenario definition 

In this charging model, the charging power varies from day to day which is a function of 
parking interval27, available residential charging voltage level and daily energy 
requirement from each vehicle which is a function of daily distance traveled. The daily 
parking times of vehicles are functions of daily arrival and departure times which are 
probabilistic in nature as shown in Table 6.2. Once the daily arrival and departure times 
of PEVs on a given day are determined, the parking interval and hence the charging 
time interval in this case, will be the difference between the two. The charging voltage 
level is assumed to be 230V, single phase and the maximum charging current available 
from the charging circuit is assumed to be 16A. Note that the daily vehicle‟s charging 
power level is random which can vary from day to day depending on the charging 
interval and required energy. If in case the required charging current demand exceeds 
the maximum current, the model has the capability to limit the current to the circuit‟s 

maximum. 

6.3.3.2 Output from the model 

To have a clear understanding of outputs from this model, it important to understand 
how the probabilistic input parameters, which dictate the output from the models, are 
distributed and manipulated to be used in the model. Figure 6.42 illustrates the 
distribution of vehicle battery capacities, daily distance travelled, daily arrival and 
departure times of vehicles where all are generated during the simulation to determine 
the outputs from the model for 100% penetration levels of PEVs. It is important to note 
that the simulated input parameters match with the statistics defined in the scenarios. 

                                                           
26

 It is important to note at this point that if delayed charging is needed to provide ancillary service to the grid, the model can allow 
this. However, in the following section delayed charging is not considered. It is assumed that vehicles start charging on arrival 
from work.  

27
 The time interval between vehicle arrival time on day (d) and departure time on day (d+1) 
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Figure 6.42: Simulated distribution of probabilistic parameters used in the model 

These probabilistically distributed input parameters to the model dictate all aspects of 
outputs from the model. Figure 6.43 shows one example output from the model which 
illustrates daily charging interval of vehicle at home. It is in this charging interval that this 
model charges PEVs at home. As can be seen from the figure, about 35 vehicles out of 
450 are parking at home for about 10 hour before going to work the next day. This is 
very important. As stated before, the charging circuit has maximum current capacity. 
There is a probability that the current demand from PEVs may exceed this limit due to 
short interval and high energy demand. In this case the model limits the current demand 
to the maximum demand and the vehicle may leave home partially charged. These 
current demands from vehicles are tracked in the model and the result is plotted in 
Figure 6.44. As can be seen from the figure, almost all the vehicles have daily current 
demand below the maximum circuit capacity and hence all are fully charged when 
leaving to work next day. 

 

Figure 6.43: Distribution of daily parking interval of vehicles at home 
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Figure 6.44: Distribution of daily current demand from vehicles 

Charging PEVs over such an extended period of time at home means that the daily 
energy demand from vehicles will be distributed over longer time interval which in turn 
lower power demand from the grid. This is where the main advantage of Case I 
residential model lies. Figure 6.45 illustrates per minute and per hour load profiles due 
to Case I residential charging for different penetration levels. 

 

Figure 6.45: Per hour and per minute load profiles for a week, PEV residential 
charging only 
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Unlike fast charging models, per minute and per hour load profiles of residential 
charging are almost the same. This is mainly because of the charging time interval. In 
residential charging, PEVs are charged in order of hours whereas in fast charging, 
charging interval is in an order of few minutes. 

One of an interesting result from residential charging is the SOC distribution. Figure 
6.46 shows the simulated distribution of daily SOC levels. We know that SOC levels of 
all vehicles in the models cannot be lower than 10%, which is a minimum allowable 
value. However this figure shows an SOC level of even much lower, about -30%. What 
does this negative SOC mean? In residential charging models, we have assumed that 
vehicles can only be charged once per day, which is during parking interval at home. 
However it happened that some vehicles travelled beyond the capability of their battery 
as a result of probabilistic daily distance travelled. In this case, the only option for 
vehicles to finish the remaining distance is either to recharge outside home such as fast 
charging stations or use a hybrid energy source. Neither of these alternatives is 
considered in this model28.  This is purposely done to give an indication of required 
charging infrastructures outside home and the range of battery capacities to be used if 
fully electric vehicles are to stay on the road. 

 

Figure 6.46: Daily SOC distribution of vehicles 

6.3.3.3 Distribution system impact 

Figure 6.47 shows the loadings of both distribution transformers at each penetration 
levels of PEVs. As can be seen from the figure, no transformer limit is exceeded even at 
100% penetration level. 

                                                           
28

 Remember that charging multiple times per day is considered in fast charging models 
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Figure 6.47: Transformer loadings resulting from PEV residential charging  

However transformer loadings are increased due to added power demand from the 
vehicles. The increased loading of the transformer will result increased winding 
currents, which will intern result in increased transformer temperature. This increased 
winding current resulting from increased transformer loading can be used to find the 
hottest point in the transformer using the model described in section 5.3.2. Figure 6.48 
shows the hotspot temperature of both transformers resulting from different transformer 
loading conditions. Note that hotspot temperature is calculated by assuming an ambient 
temperature of 30oC throughout the day in both Case I and Case II models. 

 

Figure 6.48: Hot spot temperature profiles of transformers resulting from different 
loading condition of transformers 
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As can be seen from Figure 6.48, the hotspot temperature of Transformer II exceeds its 
rated hot spot temperature, which is 110 oC, sometime during the day. Hence 
necessary arrangements by providing cooling system, has to be made to limits these 
impacts of the transformers. Once the hotspot temperature profile is determined for 
each transformer, accelerated aging factor (AAF) of the transformers can be calculated 
based on the model discussed in section 5.3.3. The calculated accelerated AAF is 
illustrated in Figure 6.49. This can be translated into transformer loss of (LOL) as 
indicated in section 5.3.3. 

 

Figure 6.49: Transformers Accelerated Aging Factors 
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Similar to residential charging Case I, this case uses the same distribution of battery 
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travelled by each vehicle. Apart from this, it also uses the same data as was used in 
Case I on total vehicle population in the study area, penetration levels and distribution of 
PEVs on each transformer. 

The main difference between the two cases stem from the way they charge PEVs. In 
Case I, required energy, charging voltage level and parking interval of vehicles were 
used to determine the charging power levels. However, in Case II residential charging 
model the fixed charging power level and required grid energy from vehicles determines 
the charging time interval. As a result, this model assumes a charging power level of 
3.3KW that represents residential charging power level of LAMPO2 discussed in section 
3.5.1. 

6.3.4.2 Output from the model 

Since Case I and Case II residential charging models use the same data source on 
battery capacities, daily distance travelled, arrival and departure time distribution, they 
both have similar distribution of battery capacities, daily distance travelled, arrival and 
departure times and SOCs. However they have differences on generated load profiles 
and charging time distribution as illustrated in Figure 6.50 and Figure 6.51. 
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Figure 6.50: PEV hourly and per minute load profiles for a week, load due to PEV 
charging only 

 

 

Figure 6.51: Charging time interval distribution, residential charging Case II 
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with the parking interval and hence the charging time interval illustrated in Figure 6.43 

1 2 3 4 5 6 7
0

200

400

600

800

Time of a week [Day]

P
o

w
e
r 

(K
W

)

Per hour daily load profiles for a week

Case II Reisdential charging

 

 

100% PEV

75% PEV

50% PEV

25% PEV

10% PEV

1 2 3 4 5 6 7
0

200

400

600

800

Time of a week [Day]

P
o

w
e
r 

(K
W

)

Per minute load profile for a week

Case II Residential charging

0 1 2 3 4 5 6
0

10

20

30

40

50

60

Time  [Hours]

N
u

m
b

e
r 

o
f 

v
e
h

c
il

e
s
 o

u
t 

o
f 

4
5
0

Charging time interval distribution, Case II resiential charging



Probabilistic Modeling of Plug-In Electric Vehicles Charging Impacts on Power Systems                            Page | 97  

 

for Case I. As we have discussed it before, the distribution of daily distance travelled 
and battery capacities are the same in both cases. This means that we have the same 
grid energy demand from PEVs in both cases. But this energy is required to be supplied 
in a shorter charging time interval in Case II than it is in Case I. This increases the peak 
power demand in Case II residential charging model. 

6.3.4.3 Distribution system impact 

As stated before, the smaller charging time of vehicles at a fixed power level has 
resulted in a higher peak power demand. This will intern increase the transformer 
loadings as shown in Figure 6.52. From this figure one can see that apart from 
increased transformer loadings, the rating of TR II is exceeded at 100% and 75% PEV 
penetration. This needs controlling the charging of PEVs in some way to protect the 
transformer from damage. 

 

Figure 6.52: Transformer loadings resulting from Case II residential charging 
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intern result increased transformer winding temperature. Figure 6.53 illustrates 
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Figure 6.53: Distribution transformer hotspot temperature profiles resulting from 
Case II residential charging 

As can be seen from Figure 6.53, the temperature of the hottest point in the transformer 
has exceeded the rated hotspot temperature of the transformer. In TR II, the limit is 
exceeded at all penetration levels whereas in TR I it is exceeded only 100% PEV 
penetration level. Compare this result with that shown in Figure 6.48 where this limit is 
not exceeded for TR I and in TR II the hotspot temperature is lower than that shown in 
Figure 6.53. 

Similar to Case I residential charging model, this hotspot temperature variation can be 
translated into equivalent accelerated aging factor (AAF) of the transformer as shown in 
Figure 6.54 below. From this we can see that transformers loss life is faster in Case II 
residential charging than in Case I. 

 

Figure 6.54: Accelerated Aging Factors of transformers resulting from Case II 
residential fast charging 
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7 CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

One of the most important achievements of this diploma work are the probabilistic 
models developed to quantify charging patterns of PEVs both at residential areas and 
public fast charging stations. All the charging models developed can be used in any 
system provided that required input data for the model are available.  

In the fast charging models, deterministic approach is compared with probabilistic 
approach. The result showed the incapability of deterministic approach in drawing a 
good picture of PEV charging patterns. From this it is concluded that probabilistic 
approach is the best way to quantify the impacts of PEV charging on the power system. 

Distribution of number of charging per day of PEVs at the fast charging stations is the 
second most important outputs from the fast charging models. From this distribution a 
good initial estimation on the required charging infrastructures outside residential areas 
can be made. 

The third important result is the distribution of required number of charging poles at the 
fast charging stations. From this distribution an economic decision can be made on the 
optimum required number of charging poles at fast charging stations. 

What is also important from fast charging models is impact of fast charging on the 
system bus voltage. From the distribution of voltage profiles at system buses, an 
important clue to establish the relationship between optimum sizing of required energy 
storage devices at fast charging station can be made. 

Important conclusion can also be drawn from residential charging models. As we have 
discussed, residential Case I charging model, which charges PEVs over an extended 
parking interval gives a more sound and acceptable results. Hence it can best be used 
to quantify charging patterns of PEVs in residential areas.  

There are a number of outputs from residential charging models. Among these is 
distribution of SOC levels. This SOC distribution curve can be used for an optimum 
sizing of battery capacities to be used in the mass penetration of PEVs to be deployed 
in the market. At the same time, this same distribution can also be used to a relationship 
between required infrastructures outside residential areas, daily distance traveled and 
battery capacities to be used in the vehicle fleet. 

Using load profiles from fast charging models and base load profiles of selected area of 
study, impacts of fast charging on the system bus voltage can be made. In addition to 
this, using the load profiles generated from residential charging models along with 
system base load profiles, impact analysis on the distribution transformer loadings, 
variation of hotspot temperature and variation of accelerated aging factor (AAF) can be 
made. 

Note that impact analysis of fast charging stations on the distribution bus voltages is 
carried out in DIgSILENT Power Factory. And all PEV charging models of both 
residential and fast charging are developed using MATLAB programming language. 
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7.2 Future work 

There are a number of things need to be considered in the future. Among these is 
clustering of PEV charging. As we have seen, the models developed in this thesis 
consider residential charging and charging at the fast charging stations independently. 
We have not considered charging vehicles at industrial premises, commercial areas, 
parking areas, road side charging poles and similar other charging alternatives. A given 
vehicle can be charge at different charging areas on a given day depending on a given 
circumstances. In this case, there must be a way to cluster or integrate the behaviors of 
PEV charging to have more sound loading profiles from PEV charging. 

From the distribution of bus voltages, we can have a good initial estimation on the 
required size of energy storage. However, for a more accurate result further 
investigation to establish a mathematical relationship between voltage distribution at 
system bus and required energy storage has to have to be done. 

As we have seen, the distribution of number of charging per day gives a good indication 

of required charging infrastructures outside residential premises. Further study need to 
be carried out to formulate this distribution with the required charging infrastructure 
outside residential areas. In addition to this, we have also observed the relationship 
between number of charging per day and battery sizes. As we have seen from this, 
there is a strong relationship between distribution of battery capacities, required number 
of charging per day and required charging infrastructures outside residential premises. 
Extended studies need to be taken to establish this relationship. 

Much need to done in Monte Carlo simulation. As we have seen in the models, there 
are a number of parameters that dictate the output from the models. Among these are 
distribution of daily distance travelled, distribution of required battery capacities, 
distribution of vehicle population in each class and arrival time distribution of vehicles. 
First, it is very important to figure out a way to mach a given statistics with appropriate 
distribution. Once the perfect distributions that matches the statistics is determined, it 
important to figure out the relationship between the parameters, if there is any. Each 
parameters need to be taken into account to finally determine Monte Carlo loop needed 
to solve the whole system with a certain degree of confidence level. This parameter 
relationship, to establish degree of confidence in the simulation is not taken into account 
in this thesis work. Further work need to be done to establish this relation. 
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9 CHAPTER TEN: ENCLOSURES 

 

Figure 9.1: IEEE RTS-96 network topology 
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Table 9.1: Weekly Peak Load in Percent of annual peak 

Week Peak load (%) Week Peak load (%) 

1 86.2 27 75,5 

2 90.0 28 81,6 

3 87.8 29 80,1 

4 83,4 30 88,0 

5 88,0 31 72,2 

6 84,1 32 77,6 

7 83,2 33 80,0 

8 80,6 34 72,9 

9 74,0 35 72,6 

10 73,7 36 70,5 

11 71,5 37 78,0 

12 72,7 38 69,5 

13 70,4 39 72,4 

14 75,0 40 72,4 

15 72,1 41 74,3 

16 80,0 42 74,4 

17 75,4 43 80,0 

18 83,7 44 88,1 

19 87,0 45 88,5 

20 88,0 46 90,9 

21 85,6 47 94,0 

22 81,1 48 89,0 

23 90,0 49 94,2 

24 88,7 50 97,0 

25 89,6 51 100 

26 86,1 52 95,2 

 

Table 9.2: Daily load in Percent of Weekly Peak 

Day Peak Load (%) 

Monday 93 

Tuesday 100 

Wednesday 98 

Thursday 96 

Friday 94 

Saturday 77 

Sunday 75 

 

Table 9.3: Hourly peak load in Percent of daily Peak 

 Winter weeks Summer weeks Spring/fall weeks 

 1-8 & 44-52 18-30 9-17 & 31-43 

Hour Week day Weekend Weekday Weekend Weekday  Weekend 

12-1 am 67 78 64 74 63 65 

1-2 63 72 60 70 62 73 

2-3 60 68 58 66 60 69 

3-4 59 66 56 65 58 66 
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4-5 59 64 56 64 59 65 

5-6 60 65 58 62 65 65 

6-7 74 66 64 62 72 68 

7-8 86 70 76 66 85 74 

8-9 85 80 87 81 95 83 

9-10 96 88 95 86 99 89 

10-11 96 90 99 91 100 92 

11-noon 95 91 100 93 99 94 

Noon-1pm 95 90 99 93 99 94 

1-2 95 88 100 92 92 90 

2-3 93 87 100 91 90 90 

3-4 94 87 97 91 88 86 

4-5 99 91 96 92 90 85 

5-6 100 100 96 94 92 88 

6-7 100 99 93 95 96 92 

7-8 96 97 92 95 98 100 

8-9 91 94 92 100 96 97 

9-10 83 92 93 93 90 95 

10-11 73 87 87 88 80 90 

11-12 63 81 72 80 70 85 

 

Table 9.4: List of expected PHEVs (non-exhaustive) [4.4] 

 

 



Probabilistic Modeling of Plug-In Electric Vehicles Charging Impacts on Power Systems                            Page | 

107  

 

Table 9.5: List of expected BEVs (non-exhaustive) [4.4] 

 

 


