

gradRx = imfilter(R, fx); gRx = gradRx(2,2); % and in the same way for G and B color bands

(a simplified) color gradient magnitude = sqrt(gRx^2 + gRy^2 + gGx^2 + gGy^2 + gBx^2 + gBy^2) = 4.9 ≈ 5 // see Lecture 4, page 58

P1.3: See Sonka p.662, Note: you should demostrate how you calculated the result. (The result itself was known from the previous exam :-)).

P2.1: 6 bits, 2^6 = 64 P2.2: GLCM= 2 0 0 1 4 0 2 0 5 1 0 0

Contrast = 3*3*1 + 3*3*1 = 18 or using normalized GLCM: contrast = 9*(1/4) + 9*(1/4) = 18/4

P2.3: Easier to construct a robust classifier using invariant features. Using noninvariant features we can still construct a decision system/classifier but the decision rule will be more complex and less robust. P2.4: (a), (c), (e), (f)

P2.5: Optical flow estimation, in case of 3x3 neighbourhood we use 9 pixels //See Lab4, last page

P3: (1-b) or (1-a), (2-f), (3-e), (4-j), (5-g)

P4.1: For two clusters we need a kernel size (bandwith) $h_r \ge 6$, otherwise the datapoints will converge to three clusters. With uniform kernel, hr=7, the points (3,2,5,3) will converge to (3,2,5,3), (9,2,1,8) --> (9, 6.5, 1, 8), (9,8,1,8)--> (9, 6.5, 1, 8). Final segmentation (labels): 1 1 1 2 2 1 2 2 1

P4.2: 3 bits and uniformly random image -> 8 levels, 8x8--> 64 entries, every entry = ca 1/64 --> gray image with all pixels = ca 1/64

P5.1: Voting matrix:

	х	0	10	20	30	40
у						
25		0	1	0	1	0
35		1	0	3	0	1
45		0	2	0	2	0
55		0	0	1	0	0

maximum votes = 3, for entry with (x,y)=(20,35) <-- center of the circle

P5.2 Brightness matrix

10	2	4
4	6	8
6	4	2
4	4	6

Accumulation matrix			
10	7	11	
4 🔶	10	16	
6	9 —	11	
44	8	14	

Optimum	paths ((5):

10	7		-11	
4 🧲	10	$\overline{}$	16	
6	> 9◀	\rightarrow	11	
4 🗕	- 8		14	

P5.3 3^9

P6

(a) T1=0.3, T2=0.9

(b) B(under blue area) = 0.5 R(under red area) = 1.6 A=R+B = Total area=2.1 Errors: E1 = 0.1 (blue/object area) E2 = (T1-0.2)/2 + (1-T2)/2 = 0.1/2 + 0.1/2 = 0.1Missclassification error = (E1+E2)/A = (0.1+0.1)/2.1 = =0.095 (9.5%)

(c) se = (T+0.1)/0.5 for T<=0.4 se = 1 for T=>0.4

$$sp = 1 - \frac{0.1/2}{1.6} \quad 0 \le T \le 0.2$$

$$sp = [1.6 - 0.1/2 - (T - 0.2) \cdot 10 \cdot (T - 0.2)/2]/1.6 \quad 0.2 \le T \le 0.6$$

$$sp = [(1 - T) * (1 - T) * 10/2 - 0.1/2]/1.6 \quad 0.6 \le T \le 0.9 = T2$$

- (d) for $T \ge 0.4$
- (e) none