

 1 (10)

TEXTURE ANALYSIS AND CLASSIFICATION

Introduction

Texture is one of the important characteristics used in object recognition. Commonly, the textural

features are derived from cooccurrence matrices, discrete Markov Random Fields, Gabor multi-

channel filters, or fractal geometry. In this exercise we study gray level cooccurrence matrices

and the textural features that can be derived from them. Finally, we apply the textural features to

the problem of image classification.

Fig.1: Textures: grass, cork, knitted fabric, dog fur, river pebbles and checkered textile (from

Sonka[2], p. 719).

I. Cooccurrence-matrix and textural features.

The Gray Level Cooccurrence Matrix (GLCM) is based on the repeated occurrence of gray level

in the texture. The GLCM for image (size) quantized to gray levels, is a

matrix of non-normalized frequencies describing how frequently two pixels with gray level

are separated by distance in direction . See Sonka [2] for the formal definitions of GCLMs.

Example: for angle , is defined by :

Haralick [1] defined 14 features that can be derived from the cooccurrence matrices and

subsequently used in texture description and discrimination. In the Appendix (a separate pdf-file)

you can find definitions for all of the Haralick’s features. The most commonly features used in

image analysis are Angular Second Moment (ASM), Contrast (CON), Correlation (COR) and

Entropy (ENT).

II. Classification of single-texture images.

The classification problem can be formulated as follows: given a number of known images and an

unseen image, decide to which class the unseen image belongs.

(1) (2) (3) (4) (X)

Fig.2: Known images (four classes) and a new image. What class does the image X belong to?

 2 (10)

EXERCISES

PART I. Cooccurrence matrix and textural features.

1. Implement a function cooc, that calculates a cooccurrence matrix for an image, for

distance d=1 between pixels.

function P = cooc(Im, angle, Ng, normalize)

where

Im – input grayscale image

angle – 0,45,90,135 degrees

Ng – number of quantization gray levels

normalize – frequency normalize entries of P

P – cooccurrence matrix

Note: The quantization to Ng levels, 1..Ng, should be done before cooc is called.

Take a look at quantize.m function that performs the quantization using Matlab’s

histeq function. Below you can find a test image Im and the corresponding

cooccurrence matrices. You can use it for testing functions you implement.

Im = [1 1 2 2 % Im is already quantized to Ng=4 levels
 1 1 2 2

 1 3 3 3

 3 3 4 4];

>> P0 = cooc(Im, 0, 4, 0)

P0 =

4 2 1 0

2 4 0 0

1 0 6 1

0 0 1 2

>> P0n = cooc(Im, 0, 4, 1) % frequency normalized

P0n =

 0.1667 0.0833 0.0417 0

 0.0833 0.1667 0 0

 0.0417 0 0.2500 0.0417

 0 0 0.0417 0.0833

>> P45 = cooc(Im, 45, 4, 0)

P45 =

 4 1 0 0

 1 2 2 0

 0 2 4 1

 0 0 1 0

>> P90 = cooc(Im, 90, 4, 0)

P90 =

 6 0 2 0

 0 4 2 0

 2 2 2 2

 0 0 2 0

>> P135 = cooc(Im, 135, 4, 0)

P135 =

 2 1 3 0

 1 2 1 0

 3 1 0 2

 0 0 2 0

 3 (10)

2. Implement

 at least four of Haralick’s textural features (see Appendix):

function asm(p) - Angular Second Moment ASM

function contrast(p) - Contrast CON

function corr(p) - Correlation COR

function entropy(p) - Entropy ENT

where p is a frequency normalized co-occurrence matrix.

>> % test your functions on cooccurrence matrices for the image Im

>> P0n = cooc(Im,0,4,1);

>> P0n_features =[asm(P0n) contrast(P0n) corr(P0n) entropy(P0n)]

P0n_features =

 0.1458 0.5833 0.7195 2.0947

>> P45n = cooc(Im, 45, 4, 1)

P45n =

 0.2222 0.0556 0 0

 0.0556 0.1111 0.1111 0

 0 0.1111 0.2222 0.0556

 0 0 0.0556 0

>> P45n_features=[asm(P45n) contrast(P45n) corr(P45n) entropy(P45n)]

P45n_features =

 0.1481 0.4444 0.7353 2.0432

 4 (10)

>> P90n = cooc(Im, 90, 4, 1)

P90n =

 0.2500 0 0.0833 0

 0 0.1667 0.0833 0

 0.0833 0.0833 0.0833 0.0833

 0 0 0.0833 0

>> P90n_features =[asm(P90n) contrast(P90n) corr(P90n) entropy(P90n)]

P90n_features =

 0.1389 1.0000 0.4857 2.0947

>> P135n = cooc(Im, 135, 4, 1)

P135n =

 0.1111 0.0556 0.1667 0

 0.0556 0.1111 0.0556 0

 0.1667 0.0556 0 0.1111

 0 0 0.1111 0

>>P135n_features=[asm(P135n) contrast(P135n) corr(P135n) entropy(P135n)]

P135n_features =

 0.1173 1.7778 0.1628 2.2161

3. Use your developed functions to calculate the ASM, CON, COR and ENT features for

the images of (1) wood (2) grass and (3) random texture. Use Ng=8 quantization

levels. Complete the Tables 1, 2 and 3 with the calculated ASM, CON, COR and ENT

values (Hint: You might use texturetable.m for the tables).
>> I= imread('wood.tiff '); I= quantize(I,8);
>> P0 = cooc(I,0,8,1); …

Images :
(1) wood.tiff Brodatz - Wood grain (D68)
(2) grass.tiff Brodatz - Grass (D9)

(3) random.png random image, rand(512)

 (a) (b)

Fig. 3. (a) The original wood image and (b) histogram equalized and quantized image (8 levels).

 5 (10)

 ASM CON COR ENT

0º

45º

90º

135º

Average

 Table 1. ASM, contrast, correlation and entropy for the wood-image.

 (a) (b)

Fig. 4. (a) Grass (b) histogram equalized and quantified (8 levels).

 ASM CON COR ENT

0º

45º

90º

135º

Average

Table 2. ASM, contrast, correlation and entropy for the grass-image.

Fig 5: Uniform random texture (generated using Matlab’s rand(512) function).

 ASM CON COR ENT

0º

45º

90º

135º

Average

 Table 3. ASM, contrast, correlation and entropy for the random-image.

Query: Which texture (wood, grass, random) has highest ASM, CON , COR, ENT ? Do the

feature values coincide with your perception ?

ASM …………………………………………………………………..

CON …………………………………………………………………..

COR …………………………………………………………………..

ENT ……………………………………………………………………

Query: What happens with the feature values, when we rotate the image 90 degrees

(imrotate(I,90)) ?

……………………………………….……………………………………….

 6 (10)

PART II. Classification of single-texture images using textural features.

In this part we will investigate a classifier for discrimination between different types of images.

As an example we will use the wood and grass images (two-class problem) from the Part I.

The task is to build a classifier capable to distinguish between the wood and grass images.

Usually the process of the classifier design consists of the following steps:

1. Feature extraction.

2. Feature selection.

3. Classifier training.

4. Classifier testing (performance evaluation).

You will run a number of Matlab programs supplying different input parameters. This exercise

does not require any programming, however the programs require the functions you developed in

the Part I, i.e. cooc, asm, contrast, corr and entropy functions.

Before running the experiments you should read the instructions below and study the source code

of the Matlab functions:

textfeat.m – a function for feature extraction

testerr.m – a function for error rate estimation of the classifier

Step 1: Feature extraction.

Feature extraction is a process of calculation

of potentially discriminatory variables to be

used for the classification task.

As features we will use the textural features

that we have derived from the cooccurrence

matrices in the Part I. In this way we obtain

five features (four different directions and an

average) for every textural feature type. In

total, our feature vector will consist of 20

features (see Table 4).

Having only one image we obtain only one

instance of the feature vector. To obtain a

better representation of the texture we may

divide the image into a set of smaller images

and calculate the features for them. In this

way we obtain a higher number of feature

vectors.

Using the function textfeat the features

will be computed from single texture

grayscale image on 196 sub-images of size

32x32 pixels. In this way we simulate 196

images. The images are histogram equalized

and quantified to Ng=8 levels.

It is desirable to normalize the feature values

to the same mean and the same variance. In

this way we make the features equally

important. Otherwise some features could

dominate and the classifier might be not

optimal.

Table 4. The cooccurrence features.

Feature

number

Feature name

(distance d=1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

asm 0 deg

asm 45 deg

asm 90 deg

asm 135 deg

con 0 deg

con 45 deg

con 90 deg

con 135 deg

cor 0 deg

cor 45 deg

cor 90 deg

cor 135 deg

ent 0 deg

ent 45 deg

ent 90 deg

ent 135 deg

asm average

con average

cor average

ent average

 7 (10)

* Run the following commands to perform feature extraction and normalization on two images

(class 0 == wood, class 1 == grass) :

>> % FEATURE EXTRACTION

>> % function textfeat() calculates 20 features for

>> % 196 subimages of size 32x32

>>

display = 1; % a flag to display images

woodId = 0; % set class label of wood to 0

%

% calculate textural features for wood (20 features)

% using 32x32 subimages

% the feature values are returned in P matrix,

% and class labels in T (target vector)

%

[P0, T0] = textfeat('wood.tiff' , woodId , display);

%

% calculate textural features for grass

grassId = 1; % set class label of grass to 1

[P1, T1] = textfeat('grass.tiff', grassId, display);

%

% collect P0,P1,T0,T1 into training sets

%

Ptr = [P0; P1]; % training set features (parameters)

Ttr = [T0; T1]; % training set labels (target vectors)

%

% normalize the features to zero mean and unit variance, (why ?)

%

[Ptr, Ptr_mean, Ptr_std] = normalize(Ptr)

% check, mean(Ptr)== 0 ? , std(Ptr) == 1 ???, after normalization

Fig 6. Training images (a) wood (b) grass. The grid squares represent 32x32 sub-images taken as

training samples.

 8 (10)

Step 2: Feature selection.

Feature selection is a process of finding the best feature subset from the fixed set of the original

features. Usually more features leads to the better performance. However, the irrelevant features

may result in performance degradation thus we need to select an optimal set of features. To

determine the best feature subset one needs to examine all possible subsets of size . To choose

the best subset of size from set of thus requires

examinations.

In this exercise we will evaluate subsets with two elements using 2-D scatterplots. A 2-D

scatterplot is a chart displaying values for two variables. When in the 2-D scatterplot the

overlapping between samples from different classes is low than we expect that the corresponding

variables may be regarded as “good” discriminatory features. For and , this would

require a visual inspection of 190 scatterplots. Instead of visual investigation we might measure

the separability of classes using Bhattacharyya distance and use it for feature selection. For

multivariate Gaussian distributions the Bhattacharyya distance is expressed as:

where is the class mean and is the class covariance matrix, .

* Run function scattter2D, to visually investigate the distribution of the features and the

overlapping region between classes:

>> % display 2-D scatterplots for visual inspection

f1 = 2; % index of the first feature, ASM 45 deg

f2 = 4; % index of the second feature, ASM 135 deg

% FEATURE INSPECTION AND SELECTION

scatter2D(Ptr, Ttr, f1, f2);

 Fig 7. The 2D-scatterplots: in (left) we observe a considerable overlapping between the class

samples (class 0 = *, class 1 =), while in (right) the classes are well separated. Thus we expect

that using features from (right) will result in a better classifier.

Query: Investigate 2D scatterplots for some of the feature pairs and suggest which features may

be useful for our discrimination problem.

Feature pair No 1: ………………………

Feature pair No 2: ………………………

Feature pair No.3 ……………………….

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

9:COR 0

1
8
:C

O
N

 A
V

G

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

9:COR 0

1
9
:C

O
R

 A
V

G

 9 (10)

Step 3: Classifier training.

As a classifier we will use the voting kNN (k-Nearest Neighbour) classifier. The voting kNN (k-

Nearest Neighbour) classifier assigns an unknown sample to a majority class of its k nearest

neighbours:

Given: A training set Ttr of patterns (feature vectors) , labeled by classes.

 A new pattern .

1. Compute for a given the k nearest neighbours from a whole training set, using the

Euclidean pattern distance measure:

 is dimensionality of the feature vector .

2. Assign to a majority class of its k nearest neighbours.

For kNN classifier we simply keep all the training samples in a database and every time a new

unknown sample has to be classified, we calculate the nearest neighbours and assign the sample

to the class most frequently represented among these neighbours.

Step 4: Classifier testing.

The final step is the classifier’s performance evaluation. We need to estimate the classifier’s

probability of error (error rate), i.e. how many errors (wrong classifications) we expect when

using the classifier. The straightforward way to evaluate a classifier is simply counting the

number of errors on an independent test data set. The estimate of the classifier’s error rate is then

the ratio:

where is the number of test samples, is the number of misclassified samples.

(a) (b)

Fig.8. Test images: (a) 'testwood.tiff', the true class is wood.

(b) 'testgrass.tiff', the true class is grass. Number of 32x32 subimages is 196.

 10 (10)

* Run the following commands to estimate error rate of the kNN-classifier (k=1):

% ERROR RATE ESTIMATION

% calculate the features for the test images

[Pte0, Tte0] = textfeat('testwood.tiff' , 0, display);

[Pte1, Tte1] = textfeat('testgrass.tiff', 1, display);

%

% collect test features and labels into a test set

Pte = [Pte0; Pte1];

Tte = [Tte0; Tte1];

%

% transform the features using the normalization transform

sizeTr = size(Ptr,1);

sizeTe = size(Pte,1);

Pte = Pte(:,:) - repmat(Ptr_mean,sizeTe,1); % substract the mean

Pte = Pte./repmat(Ptr_std, sizeTe,1); % divide by std dev

%

% select two of the features

f1=9; f2=14; % f1=index feature #1, f2=index of feature #2

%

% evaluate error rate using features f1 & f2

testErrorRate = testerr(Ptr, Ttr, Pte, Tte, f1, f2);

Nr of test errors = 67 of 392

Test error rate = 0.17092

Used features : 9 14

* Evaluate error rate using another pair of features (or write a loop that tests a larger number of

pairs). Try to find a feature pair that gives error rate below 8%.

f1 = 9 % your choice 1 (1..20)

f2 = 18 % your choice 2 (1..20)

testerr(Ptr, Ttr, Pte, Tte, f1, f2)

%

Reporting

1. Matlab source code for cooc, asm, contrast, corr and entropy functions.

2. Answers to the questions.

3. Scatterplot(s) for the best feature pairs, with a low test error rate (below 8%), and the

estimates of the error rates.

4. Optional: Calculate the Bhattacharyya distance between wood and grass training

distributions (assuming Gaussians), using the selected feature pairs and check whether it

can be used for feature selection.

Send your report to Artur: artur.chodorowski@chalmers.se

References

[1] Haralick R M, Shanmugam K, and Dinstein I, “Textural Features for Image Classification”,

IEEE Trans on Systems, Man and Cybernetics. Vol.3, No. 6, November 1973, pp. 610-621

[2] Sonka M, Hlavac V and Boyle R, “Image Processing, Analysis and Machine Vision”, 3
rd

 ed,

2008, pp. 718-725

[3] The USC-SIPI Image Database. Textures: http://sipi.usc.edu/database/

http://sipi.usc.edu/database/

