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TEXTURE ANALYSIS AND CLASSIFICATION 

Introduction 

 

Texture is one of the important characteristics used in object recognition. Commonly, the textural 

features are derived from cooccurrence matrices, discrete Markov Random Fields, Gabor multi-

channel filters, or fractal geometry. In this exercise we study gray level cooccurrence matrices 

and the textural features that can be derived from them. Finally, we apply the textural features to 

the problem of image classification. 

 

 
 

Fig.1: Textures: grass, cork, knitted fabric, dog fur, river pebbles and checkered textile (from 

Sonka[2], p. 719). 

 

I. Cooccurrence-matrix and textural features. 

 

The Gray Level Cooccurrence Matrix (GLCM) is based on the repeated occurrence of gray level 

in the texture. The GLCM  for image (size ) quantized to  gray levels, is a 

matrix of non-normalized frequencies describing how frequently two pixels with gray level  

are separated by distance  in direction . See Sonka [2] for the formal definitions of GCLMs. 

Example: for angle ,   is defined by :   

 

 

 

       
 

Haralick [1] defined 14 features that can be derived from the cooccurrence matrices and 

subsequently used in texture description and discrimination. In the Appendix (a separate pdf-file) 

you can find definitions for all of the Haralick’s features. The most commonly features used in 

image analysis are Angular Second Moment (ASM), Contrast (CON), Correlation (COR) and 

Entropy (ENT). 

 

II. Classification of single-texture images. 

 

The classification problem can be formulated as follows: given a number of known images and an 

unseen image, decide to which class the unseen image belongs.  

 

(1)  (2)  (3)  (4)                      (X) 

 

Fig.2: Known images (four classes) and a new image. What class does the image X belong to?   
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EXERCISES 

 

PART I. Cooccurrence matrix and textural features. 

 

1. Implement a function cooc, that calculates a cooccurrence matrix for an image, for 

distance d=1 between pixels. 

 
function P = cooc(Im, angle, Ng, normalize) 

where 

Im   –  input grayscale image 

angle  –  0,45,90,135 degrees 

Ng  – number of quantization gray levels 

normalize  – frequency normalize entries of P 

P  – cooccurrence matrix 

  

Note:   The quantization to Ng levels, 1..Ng, should be done before cooc is called. 

Take a look at quantize.m function that performs the quantization using Matlab’s 

histeq function. Below you can find a test image Im and the corresponding 

cooccurrence matrices. You can use it for testing functions you implement. 

 
Im = [ 1     1     2     2  % Im is already quantized to Ng=4 levels 
      1     1     2     2 

      1     3     3     3 

      3     3     4     4 ]; 

 

>> P0 = cooc(Im, 0, 4, 0) 

P0 =  

4     2     1     0 

2     4     0     0 

1     0     6     1  

0     0     1     2 

 

>> P0n = cooc(Im, 0, 4, 1)   % frequency normalized 

P0n = 

    0.1667    0.0833    0.0417         0 

    0.0833    0.1667         0         0 

    0.0417         0    0.2500    0.0417 

         0         0    0.0417    0.0833 

  

>> P45 = cooc(Im, 45, 4, 0) 

P45 = 

     4     1     0     0 

     1     2     2     0 

     0     2     4     1 

     0     0     1     0 

 

>> P90 = cooc(Im, 90, 4, 0) 

P90 = 

     6     0     2     0 

     0     4     2     0 

     2     2     2     2 

     0     0     2     0 

 

>> P135 = cooc(Im, 135, 4, 0) 

P135 = 

     2     1     3     0 

     1     2     1     0 

     3     1     0     2 

     0     0     2     0 
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2. Implement
 
 at least four of Haralick’s textural features (see Appendix): 

 
function asm(p)   - Angular Second Moment ASM 

function contrast(p)  - Contrast CON 

function corr(p)   - Correlation COR 

function entropy(p)  - Entropy ENT 

 

where p is a frequency normalized co-occurrence matrix.  

 

 

 

 

 

 

 

 

 

 

 
>>  % test your functions on cooccurrence matrices for the image Im  

>>  P0n = cooc(Im,0,4,1); 

>>  P0n_features =[asm(P0n) contrast(P0n) corr(P0n) entropy(P0n)] 

 

P0n_features = 

 

    0.1458    0.5833    0.7195    2.0947 

 

>> P45n = cooc(Im, 45, 4, 1) 

P45n = 

 

    0.2222    0.0556         0         0 

    0.0556    0.1111    0.1111         0 

         0    0.1111    0.2222    0.0556 

         0         0    0.0556         0 

 

>> P45n_features=[asm(P45n) contrast(P45n) corr(P45n) entropy(P45n)] 

 

P45n_features = 

 

    0.1481    0.4444    0.7353    2.0432 

 

 

 

 

 

 



 

 

 

  4 (10) 

 

 

>> P90n = cooc(Im, 90, 4, 1) 

 

P90n = 

 

    0.2500         0    0.0833         0 

         0    0.1667    0.0833         0 

    0.0833    0.0833    0.0833    0.0833 

         0         0    0.0833         0 

 

>> P90n_features =[asm(P90n) contrast(P90n) corr(P90n) entropy(P90n)] 

 

P90n_features = 

 

    0.1389    1.0000    0.4857    2.0947 

 

>> P135n = cooc(Im, 135, 4, 1) 

 

P135n = 

 

    0.1111    0.0556    0.1667         0 

    0.0556    0.1111    0.0556         0 

    0.1667    0.0556         0    0.1111 

         0         0    0.1111         0 

 

>>P135n_features=[asm(P135n) contrast(P135n) corr(P135n) entropy(P135n)] 

 

P135n_features = 

 

    0.1173    1.7778    0.1628    2.2161 

 

 

3. Use your developed functions  to calculate the ASM, CON, COR and ENT features for 

the images of  (1) wood  (2) grass and (3) random texture.  Use Ng=8 quantization 

levels. Complete the Tables 1, 2 and 3 with the calculated ASM, CON, COR and ENT 

values (Hint: You might use texturetable.m for the tables).  
>> I= imread('wood.tiff '); I= quantize(I,8);  
>> P0 = cooc(I,0,8,1); … 

  

Images :       
(1) wood.tiff  Brodatz - Wood grain (D68) 
(2) grass.tiff  Brodatz - Grass (D9) 

(3) random.png  random image,  rand(512) 

 

 (a)       (b) 

 

Fig. 3. (a) The original wood image and (b) histogram equalized and quantized image (8 levels). 

 

 



 

 

 

  5 (10) 

 

 ASM CON COR ENT 

0º         

45º         

90º         

135º         

Average         

 Table 1. ASM, contrast, correlation and entropy for the wood-image. 

 

 (a)          (b) 

 

Fig. 4. (a) Grass (b) histogram equalized and quantified (8 levels). 

 

 ASM CON COR ENT 

0º         

45º            

90º            

135º            

Average            

Table 2. ASM, contrast, correlation and entropy for the grass-image. 

 

 
 

Fig 5: Uniform random texture (generated using Matlab’s rand(512) function). 

 
 ASM CON COR ENT 

0º          

45º           

90º             

135º             

Average             

 Table 3. ASM, contrast, correlation and entropy for the random-image. 

 

Query: Which texture (wood, grass, random) has highest ASM, CON , COR, ENT ? Do the 

feature values coincide with your perception ?  

ASM ………………………………………………………………….. 

CON ………………………………………………………………….. 

COR  ………………………………………………………………….. 

ENT …………………………………………………………………… 

 

Query:  What happens with the feature values, when we rotate the image 90 degrees  

(imrotate(I,90))  ? 

……………………………………….………………………………………. 
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PART II. Classification of single-texture images using textural features. 
 

In this part we will investigate a classifier for discrimination between different types of images. 

As an example we will use the wood and grass images (two-class problem) from the Part I. 

The task is to build a classifier capable to distinguish between the wood and grass images. 

   

Usually the process of the classifier design consists of the following steps: 

1. Feature extraction. 

2. Feature selection. 

3. Classifier training. 

4. Classifier testing (performance evaluation). 

 

You will run a number of Matlab programs supplying different input parameters. This exercise 

does not require any programming, however the programs require the functions you developed in 

the Part I, i.e. cooc, asm, contrast, corr and entropy functions. 

 

Before running the experiments you should read the instructions below and study the source code 

of the Matlab functions:  

textfeat.m  –  a function for feature extraction 

testerr.m  –  a function for error rate estimation of the classifier 

 

Step 1:  Feature extraction. 

 

Feature extraction is a process of calculation 

of potentially discriminatory variables to be 

used for the classification task. 

 

As features we will use the textural features 

that we have derived from the cooccurrence 

matrices in the Part I.  In this way we obtain 

five features (four different directions and an 

average) for every textural feature type.  In 

total, our feature vector will consist of 20 

features (see Table 4).  

 

Having only one image we obtain only one 

instance of the feature vector. To obtain a 

better representation of the texture we may 

divide the image into a set of smaller images 

and calculate the features for them. In this 

way we obtain a higher number of feature 

vectors. 

 

Using the function textfeat the features 

will be computed from single texture 

grayscale image on 196 sub-images of size 

32x32 pixels. In this way we simulate 196 

images. The images are histogram equalized 

and quantified to Ng=8 levels. 

 

It is desirable to normalize the feature values 

to the same mean and the same variance. In 

this way we make the features equally 

important. Otherwise some features could 

dominate and the classifier might be not 

optimal. 

 

Table 4. The cooccurrence features. 

 
Feature 

number 

Feature name 

(distance d=1) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

asm   0 deg 

asm  45 deg 

asm  90 deg 

asm 135 deg 

con   0 deg 

con  45 deg 

con  90 deg 

con 135 deg 

cor   0 deg 

cor  45 deg 

cor  90 deg 

cor 135 deg 

ent   0 deg 

ent  45 deg 

ent  90 deg 

ent 135 deg 

asm average 

con average 

cor average 

ent average 
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* Run the following commands to perform feature extraction and normalization on two images 

(class 0 == wood, class 1 == grass) : 
 
>> % FEATURE EXTRACTION 

>> % function textfeat() calculates 20 features for  

>> % 196 subimages of size 32x32 

>>  

display  = 1; % a flag to display images 

woodId = 0; % set class label of wood to 0 

% 

% calculate textural features for wood (20 features)  

% using 32x32 subimages 

% the feature values are returned in P matrix,  

% and class labels in T (target vector) 

% 

[P0, T0] = textfeat('wood.tiff' , woodId , display);  

% 

% calculate  textural features for grass 

grassId  = 1;  % set class label of grass to 1 

[P1, T1] = textfeat('grass.tiff', grassId, display); 

%  

% collect P0,P1,T0,T1 into training sets 

% 

Ptr = [P0; P1]; % training set features (parameters) 

Ttr = [T0; T1]; % training set labels (target vectors) 

% 

% normalize the features to zero mean and unit variance, (why ?) 

% 

[Ptr, Ptr_mean, Ptr_std]  = normalize(Ptr) 

% check, mean(Ptr)== 0 ? , std(Ptr) == 1 ???, after normalization 

 
 

Fig 6. Training images (a) wood (b) grass. The grid squares represent 32x32 sub-images taken as 

training samples.   
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Step 2: Feature selection. 

Feature selection is a process of finding the best feature subset from the fixed set of the original 

features. Usually more features leads to the better performance. However, the irrelevant features 

may result in performance degradation thus we need to select an optimal set of features.  To 

determine the best feature subset one needs to examine all possible subsets of size . To choose 

the best subset of size  from set of thus requires 

 

examinations. 

 

In this exercise we will evaluate subsets with two elements using 2-D scatterplots. A 2-D 

scatterplot is a chart displaying values for two variables.  When in the 2-D scatterplot the 

overlapping between samples from different classes is low than we expect that the corresponding 

variables may be regarded as “good” discriminatory features. For  and , this would 

require a visual inspection of 190 scatterplots. Instead of visual investigation we might measure 

the separability of classes using Bhattacharyya distance and use it for feature selection. For 

multivariate Gaussian distributions the Bhattacharyya  distance is expressed as: 

 

 

 

where  is the class mean and  is the class covariance matrix,  . 
 

*  Run function scattter2D,  to visually investigate the distribution of the features and the 

overlapping region between classes: 

  
>> % display 2-D scatterplots for visual inspection 

f1 =  2; % index of the first feature,  ASM 45 deg 

f2 =  4; % index of the second feature, ASM 135 deg 

% FEATURE INSPECTION AND SELECTION 

scatter2D(Ptr, Ttr, f1, f2); 

 

 Fig 7. The 2D-scatterplots: in (left) we observe a considerable overlapping between the class 

samples (class 0 = *, class 1 = ), while in (right) the classes are well separated.  Thus we expect 

that using features from (right) will result in a better classifier.   

 

Query: Investigate 2D scatterplots for some of the feature pairs and suggest which features may 

be useful for our discrimination problem. 

 

Feature pair No 1: ……………………… 

Feature pair No 2: ……………………… 

Feature pair No.3 ………………………. 
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Step 3: Classifier training. 

 

As a classifier we will use the voting kNN (k-Nearest Neighbour) classifier. The voting kNN (k-

Nearest Neighbour) classifier assigns an unknown sample to a majority class of its k nearest 

neighbours: 

 

Given:  A training set Ttr of  patterns (feature vectors)   , labeled by  classes.  

 A new pattern . 

 

1. Compute for a given  the k nearest neighbours from a whole training set, using the 

Euclidean pattern distance measure: 

 

              

 

              

              is dimensionality of the feature vector . 

 

2. Assign  to a majority class of its k nearest neighbours. 

 

For kNN classifier we simply keep all the training samples in a database and every time a new 

unknown sample has to be classified, we calculate the  nearest neighbours and assign the sample 

to the class most frequently represented among these neighbours.  

 

Step 4: Classifier testing. 

 

The final step is the classifier’s performance evaluation. We need to estimate the classifier’s 

probability of error (error rate), i.e. how many errors (wrong classifications) we expect when 

using the classifier. The straightforward way to evaluate a classifier is simply counting the 

number of errors on an independent test data set. The estimate of the classifier’s error rate is then 

the ratio: 

     
 

where  is the number of test samples,  is the number of misclassified samples. 

 

 

(a)       (b) 

 

Fig.8. Test images: (a) 'testwood.tiff', the true class is wood.   

(b) 'testgrass.tiff', the true class is grass. Number of 32x32 subimages is 196. 
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*   Run the following commands to estimate error rate of the kNN-classifier (k=1): 
 

% ERROR RATE ESTIMATION  

% calculate the features for the test images 

[Pte0, Tte0] = textfeat('testwood.tiff' ,  0, display); 

[Pte1, Tte1] = textfeat('testgrass.tiff',  1, display); 

% 

% collect test features and labels into a test set 

Pte = [Pte0; Pte1]; 

Tte = [Tte0; Tte1]; 

% 

% transform the features using the normalization transform  

sizeTr = size(Ptr,1); 

sizeTe = size(Pte,1); 

Pte = Pte(:,:) - repmat(Ptr_mean,sizeTe,1); % substract the mean  

Pte = Pte./repmat(Ptr_std, sizeTe,1);  % divide by std dev 

% 

% select two of the features 

f1=9; f2=14;  % f1=index feature #1, f2=index of feature #2 

% 

% evaluate error rate using features f1 & f2  

testErrorRate = testerr(Ptr, Ttr, Pte, Tte, f1, f2); 

 

 

Nr of test errors = 67 of 392 

Test error rate   = 0.17092 

Used features     : 9 14 

 

* Evaluate error rate using another pair of features (or write a loop that tests a larger number of 

pairs). Try to find a feature pair that gives error rate below 8%.  
 

f1 = 9   % your choice 1 (1..20) 

f2 = 18  % your choice 2 (1..20) 

testerr(Ptr, Ttr, Pte, Tte, f1, f2) 

% 

  

Reporting 

 

1. Matlab source code for cooc, asm, contrast, corr and entropy functions. 

2. Answers to the questions. 

3. Scatterplot(s) for the best feature pairs, with a low test error rate (below 8%), and the 

estimates of the error rates.  

4. Optional: Calculate the Bhattacharyya distance between wood and grass training 

distributions (assuming Gaussians), using the selected feature pairs and check whether it 

can be used for feature selection.   

 

Send your report to Artur:   artur.chodorowski@chalmers.se  
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