1 (10)

TEXTURE ANALYSIS AND CLASSIFICATION
Introduction

Texture is one of the important characteristics used in object recognition. Commonly, the textural
features are derived from cooccurrence matrices, discrete Markov Random Fields, Gabor multi-
channel filters, or fractal geometry. In this exercise we study gray level cooccurrence matrices
and the textural features that can be derived from them. Finally, we apply the textural features to
the problem of image classification.

Fig.1: Textures: grass, cork, knitted fabric, dog fur, river pebbles and checkered textile (from
Sonka[2], p. 719).

I. Cooccurrence-matrix and textural features.

The Gray Level Cooccurrence Matrix (GLCM) is based on the repeated occurrence of gray level
in the texture. The GLCM P, 4(a, b), for image I (size M x N) quantized to N, gray levels, is a
matrix of non-normalized frequencies describing how frequently two pixels with gray level a, b
are separated by distance d in direction ¢. See Sonka [2] for the formal definitions of GCLMs.
Example: for angle ¢ = 0, P,_, 4(a, b) is defined by :

_ ((k,D),(m,n)) € D:
Pyq(a,b) = #{k -m=0, l-nl=d, IkD=a I(mn)= b}

D=(MXN)Xx(MXN)

Haralick [1] defined 14 features that can be derived from the cooccurrence matrices and
subsequently used in texture description and discrimination. In the Appendix (a separate pdf-file)
you can find definitions for all of the Haralick’s features. The most commonly features used in
image analysis are Angular Second Moment (ASM), Contrast (CON), Correlation (COR) and
Entropy (ENT).

I1. Classification of single-texture images.

The classification problem can be formulated as follows: given a number of known images and an
unseen image, decide to which class the unseen image belongs.

NAIEIR
(\H,\‘H‘ |
|

i

Fig.2: Known images (four classes) and a new image. What class does the image X belong to?

2 (10)
EXERCISES

PART I. Cooccurrence matrix and textural features.

1. Implement a function cooc, that calculates a cooccurrence matrix for an image, for
distance d=1 between pixels.

function P = cooc(Im, angle, Ng, normalize)

where
Im - input grayscale image
angle - 0,45,90,135 degrees
Ng - number of quantization gray levels
normalize - frequency normalize entries of P
P - cooccurrence matrix

Note: The quantization to Ng levels, 1. .Ng, should be done before cooc is called.
Take a look at quantize.m function that performs the quantization using Matlab’s
histeqg function. Below you can find a test image Im and the corresponding
cooccurrence matrices. You can use it for testing functions you implement.

Im = [% Imis already quantized to Ng=4 levels

[
ww e e
Sw NN
Sw NN

>> PO = cooc(Im, 0, 4, 0)

PO =
4 2 1 0
2 4 0 0
1 0 6 1
0 0 1 2
>> POn = cooc (Im, 0, 4, 1) % frequency normalized
POn =
0.1667 0.0833 0.0417 0
0.0833 0.1667 0 0
0.0417 0 0.2500 0.0417
0 0 0.0417 0.0833

>> P45 = cooc(Im, 45, 4, 0)
P45 =

O O b
OoON N -
=N O
o OO

>> P90 = cooc(Im, 90, 4, 0)
P90 =

O N B O
NN

ON OO

>> P135 = cooc(Im, 135, 4, 0)
P135 =

N
o N
N O W
oN O o

3(10)
2. Implement at least four of Haralick’s textural features (see Appendix):

function asm(p)
function contrast (p)
function corr (p)
function entropy (p)

Angular Second Moment ASM
Contrast CON

Correlation COR

Entropy ENT

where p is a frequency normalized co-occurrence matrix.

Ng Ng
ASM = Z Z p*(a,b)
a=1b=1
Ng—l Ng Ng
CON = z k? ZZp(a,b) la—bl=k k=0,.,N,—1
k=0 a=1b=1

YN YN a-beplab) —ug - thy

COR =
0,4 * Op
Ng Ng
ENT = — Z Z p(a,b) - In (p(a, b))
a=1b=1

>> % test your functions on cooccurrence matrices for the image Im
>> POn = cooc(Im,0,4,1);

>> POn_features =[asm(POn) contrast (POn) corr(POn) entropy (POn)]
POn features =

0.1458 0.5833 0.7195 2.0947

>> P45n = cooc(Im, 45, 4, 1)

P45n =
0.2222 0.0556 0 0
0.0556 0.1111 0.1111 0
0 0.1111 0.2222 0.0556
0 0 0.0556 0

>> P45n features=[asm(P45n) contrast (P45n) corr (P45n) entropy (P45n)]
P45n features =

0.1481 0.4444 0.7353 2.0432

4 (10)

>> P90n = cooc(Im, 90, 4, 1)

P90n =
0.2500 0 0.0833 0
0 0.1667 0.0833 0
0.0833 0.0833 0.0833 0.0833
0 0 0.0833 0

>> P90n_ features =[asm(P90n) contrast(PS0n) corr (P90n) entropy (PS0n)]
P90n_ features =
0.1389 1.0000 0.4857 2.0947

>> P135n = cooc(Im, 135, 4, 1)

P135n =
0.1111 0.0556 0.1667 0
0.0556 0.1111 0.0556 0
0.1667 0.0556 0 0.1111

0 0 0.1111 0
>>P135n features=[asm(P135n) contrast (P135n) corr(P135n) entropy(P135n)]
P135n features =

0.1173 1.7778 0.1628 2.2161

3. Use your developed functions to calculate the ASM, CON, COR and ENT features for
the images of (1) wood (2) grass and (3) random texture. Use Ng=8 quantization
levels. Complete the Tables 1, 2 and 3 with the calculated ASM, CON, COR and ENT
values (Hint: You might use texturetable.m for the tables).

>> I= imread('wood.tiff '); I= quantize(I,8);
>> PO = cooc(I,0,8,1);

Images :

(1) wood.tiff Brodatz - Wood grain (D68)
(2) grass.tiff Brodatz - Grass (D9)

(3) random.png random image, rand(512)

| illrll IHHI‘! !‘I'l “’ \u.
|!1{|% lllljfh}l | |

;‘ i -I‘Iw,l"” | IM‘I‘I:‘.‘. | .
|$”H}%“f”JL!%1

. (b)

Fig. 3. () The original wood image and (b) histogram equalized and quantized image (8 levels).

5 (10)

ASM CON COR ENT

00

45°

90°

135°

Average

Table 1. ASM, contrast, correlation and entropy for the wood-image.

(b)

Fig. 4. (a) Grass (b) histogram equalized and quantified (8 levels).

ASM CON COR ENT

00

45°

90°

135°

Average

Table 2. ASM, contrast, correlation and entropy for the grass-image.

Fig 5: Uniform random texture (generated using Matlab’s rand (512) function).

ASM CON COR ENT

00

45°

90°

135°

Average

Table 3. ASM, contrast, correlation and entropy for the random-image.

Query: Which texture (wood, grass, random) has highest ASM, CON , COR, ENT ? Do the
feature values coincide with your perception ?
ASM

Query: What happens with the feature values, when we rotate the image 90 degrees
(imrotate (I,90)) ?

6 (10)
PART II. Classification of single-texture images using textural features.

In this part we will investigate a classifier for discrimination between different types of images.
As an example we will use the wood and grass images (two-class problem) from the Part I.
The task is to build a classifier capable to distinguish between the wood and grass images.

Usually the process of the classifier design consists of the following steps:
1. Feature extraction.
2. Feature selection.
3. Classifier training.
4. Classifier testing (performance evaluation).

You will run a number of Matlab programs supplying different input parameters. This exercise
does not require any programming, however the programs require the functions you developed in
the Part I, i.e. cooc, asm, contrast, corr and entropy functions.

Before running the experiments you should read the instructions below and study the source code
of the Matlab functions:

textfeat.m — afunction for feature extraction

testerr.m — afunction for error rate estimation of the classifier

Step 1: Feature extraction.

Feature extraction is a process of calculation
of potentially discriminatory variables to be
used for the classification task.

As features we will use the textural features
that we have derived from the cooccurrence
matrices in the Part I. In this way we obtain
five features (four different directions and an
average) for every textural feature type. In
total, our feature vector will consist of 20
features (see Table 4).

Having only one image we obtain only one
instance of the feature vector. To obtain a
better representation of the texture we may
divide the image into a set of smaller images
and calculate the features for them. In this
way we obtain a higher number of feature
vectors.

Using the function textfeat the features
will be computed from single texture
grayscale image on 196 sub-images of size
32x32 pixels. In this way we simulate 196
images. The images are histogram equalized
and quantified to N,=8 levels.

It is desirable to normalize the feature values
to the same mean and the same variance. In

this way we make the features equally
important. Otherwise some features could
dominate and the classifier might be not
optimal.

Table 4. The cooccurrence features.

Feature Feature name
number | (distance d=1)
1 asm 0 deg
2 asm 45 deg
3 asm 90 deg
4 asm 135 deg
5 con 0 deg
6 con 45 deg
7 con 90 deg
8 con 135 deg
9 cor 0 deg
10 cor 45 deg
11 cor 90 deg
12 cor 135 deg
13 ent 0 deg
14 ent 45 deg
15 ent 90 deg
16 ent 135 deg
17 asm average
18 con average
19 cor average
20 ent average

7 (10)

* Run the following commands to perform feature extraction and normalization on two images

(class 0 == wood, class 1 == grass) :

>> % FEATURE EXTRACTION

>> function textfeat () calculates 20 features for
>> 196 subimages of size 32x32

>>

display 1; a flag to display images

woodId = 0; % set class label of wood to O

o° o
o\

o\

o

calculate textural features for wood (20 features)
using 32x32 subimages

the feature values are returned in P matrix,

and class labels in T (target vector)

o° oo

o\

PO, TO] = textfeat('wood.tiff' , woodId , display):;

0% — oo

o

calculate textural features for grass

[

grassId = 1; % set class label of grass to 1

[P1, T1l] = textfeat('grass.tiff', grassld, display);

% collect PO,P1,TO0,Tl into training sets

Ptr = [PO; P1]; % training set features (parameters)

Ttr = [TO; T1]; % training set labels (target vectors)

% normalize the features to zero mean and unit variance, (why ?)
[Ptr, Ptr mean, Ptr std] = normalize (Ptr)

check, mean(Ptr)== 0 ? , std(Ptr) == 1 ??2?, after normalization

e
LT LA
1 !
|

Fig 6. Training images (a) wood (b) grass. The grid squares represent 32x32 sub-images taken as

training samples.

8 (10)

Step 2: Feature selection.

Feature selection is a process of finding the best feature subset from the fixed set of the original
features. Usually more features leads to the better performance. However, the irrelevant features
may result in performance degradation thus we need to select an optimal set of features. To
determine the best feature subset one needs to examine all possible subsets of size p. To choose
the best subset of size p from set of d thus requires

(z) - p! (dd!— p)!

In this exercise we will evaluate subsets with two elements using 2-D scatterplots. A 2-D
scatterplot is a chart displaying values for two variables. When in the 2-D scatterplot the
overlapping between samples from different classes is low than we expect that the corresponding
variables may be regarded as “good” discriminatory features. For d = 20, and p = 2, this would
require a visual inspection of 190 scatterplots. Instead of visual investigation we might measure
the separability of classes using Bhattacharyya distance and use it for feature selection. For
multivariate Gaussian distributions the Bhattacharyya Dy distance is expressed as:

examinations.

D _l(m -my)'s7 (m; —m)+11n { = }
B =g 2 1) \Jdet(S,) det (S5)

where m is the class mean and S is the class covariance matrix, § = (§; +S,)/2.

* Run function scattter2D, to visually investigate the distribution of the features and the
overlapping region between classes:

>> % display 2-D scatterplots for visual inspection
fl1 = 2; % index of the first feature, ASM 45 deg
f2 = 4; % index of the second feature, ASM 135 deg
% FEATURE INSPECTION AND SELECTION

scatter2D (Ptr, Ttr, f1, £f2);

18:CON AVG

i
[m)
O
ES

- 0
9:COR 0 9:COR 0

Fig 7. The 2D-scatterplots: in (left) we observe a considerable overlapping between the class
samples (class 0 = *, class 1 = @), while in (right) the classes are well separated. Thus we expect
that using features from (right) will result in a better classifier.

Query: Investigate 2D scatterplots for some of the feature pairs and suggest which features may
be useful for our discrimination problem.

Feature pair No 1: ...l
Feature pair No 2:coevviininnnn.
Feature pair No.3coooiiiiininns

9 (10)
Step 3: Classifier training.
As a classifier we will use the voting KNN (k-Nearest Neighbour) classifier. The voting KNN (k-

Nearest Neighbour) classifier assigns an unknown sample to a majority class of its k nearest
neighbours:

Given: Atraining set Ttr of N patterns (feature vectors) x,,x,, ... Xy, labeled by c classes.
A new pattern x.

1. Compute for a given x the k nearest neighbours from a whole training set, using the
Euclidean pattern distance measure:

x; =[xy Xiz - Xipl, X =[x X3 ... xp]
D is dimensionality of the feature vector x.
2. Assign x to a majority class of its k nearest neighbours.

For kNN classifier we simply keep all the training samples in a database and every time a new
unknown sample has to be classified, we calculate the k nearest neighbours and assign the sample
to the class most frequently represented among these neighbours.

Step 4: Classifier testing.

The final step is the classifier’s performance evaluation. We need to estimate the classifier’s
probability of error (error rate), i.e. how many errors (wrong classifications) we expect when
using the classifier. The straightforward way to evaluate a classifier is simply counting the
number of errors on an independent test data set. The estimate of the classifier’s error rate is then
the ratio:

errorRate = N,/N

where N is the number of test samples, N, is the number of misclassified samples.

@

Fig.8. Test images: (a) 'testwood.tiff', the true class is wood.
(b) 'testgrass.tiff',thetrue classis grass. Number of 32x32 subimages is 196.

10 (10)
* Run the following commands to estimate error rate of the KNN-classifier (k=1):

% ERROR RATE ESTIMATION

calculate the features for the test images

PtelO, TtelO] = textfeat('testwood.tiff' , 0, display);
Ptel, Ttel] textfeat ('testgrass.tiff', 1, display);

0 — — o°

o

collect test features and labels into a test set
te = [PteO; Ptel];
te = [TteO; Ttel];

= v}

o\

Q

% transform the features using the normalization transform
sizeTr = size(Ptr,1);

sizeTe = size(Pte,1l);
Pte = Pte(:,:) - repmat (Ptr mean,sizeTe,1); % substract the mean
Pte = Pte./repmat (Ptr std, sizeTe,1l); % divide by std dev

Q

o\

o\

select two of the features
£f1=9; f2=14; % fl=index feature #1, f2=index of feature #2

o

% evaluate error rate using features fl1 & f2
testErrorRate = testerr (Ptr, Ttr, Pte, Tte, f1l, £f2);

Nr of test errors = 67 of 392
Test error rate 0.17092
Used features : 9 14

* Evaluate error rate using another pair of features (or write a loop that tests a larger number of
pairs). Try to find a feature pair that gives error rate below 8%.

f1 =9 % your choice 1 (1..20)
f2 = 18 &% your choice 2 (1..20)
testerr (Ptr, Ttr, Pte, Tte, fl1l, £2)

%

Reporting

1. Matlab source code for cooc, asm, contrast, corrandentropy functions.

Answers to the questions.

3. Scatterplot(s) for the best feature pairs, with a low test error rate (below 8%), and the
estimates of the error rates.

4. Optional: Calculate the Bhattacharyya distance between wood and grass training
distributions (assuming Gaussians), using the selected feature pairs and check whether it
can be used for feature selection.

N

Send your report to Artur: artur.chodorowski@chalmers. se

References

[1] Haralick R M, Shanmugam K, and Dinstein I, “Textural Features for Image Classification”,
IEEE Trans on Systems, Man and Cybernetics. VVol.3, No. 6, November 1973, pp. 610-621

[2] Sonka M, Hlavac V and Boyle R, “Image Processing, Analysis and Machine Vision”, 3" ed,
2008, pp. 718-725

[3] The USC-SIPI Image Database. Textures: http://sipi.usc.edu/database/

http://sipi.usc.edu/database/

