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Abstract 
 

In this work, a Computer Aided Diagnosis (CADx) system for classification of oral 

cavity lesions from histological images based upon the image analysis and 

pattern recognition has been developed. The evaluation of oral 

conditions/diseases is primarily performed by a visual examination, followed by 

a pathological investigation of the suspicious area. However, this diagnostic 

criterion will almost certainly be subjective and dependent on the pathologist’s 

knowledge, experience and interpretation. So, a computer based system may be 

used as a supportive tool for oral specialists to establish a more consistent and 

accurate diagnosis of oral cavity lesions. 

 

From the extensive range of the lesions and abnormalities rising in the site of 

human oral cavity, we proposed to investigate two of the common and 

potentially precancerous lesions; Oral Submucous Fibrosis (OSF) and Oral Lichen 

Planus (OLP). The classification problem studied in this paper is considered as a 

two class problem; the Normal Oral Mucosa (NOM) tissues versus the OLP/OSF 

premalignant lesions and the investigated classifiers are Support Vector Machine 

(SVM) and k-Nearest Neighbors (kNN). We proposed to investigate the 

histogram-based properties of the tissue as discriminating features. Also, two 

color representation modalities (RGB and HSV color histogram systems) are 

used to evaluate their discriminative power for analysis of histological images. 

Estimation of the classifier performance was done using Receiver Operating 

Characteristic based on the resubstitution, 5-fold cross validation and leave-one-

out methods.  

 

Relying only on the histogram-based properties of oral lesions, the overall 

classification accuracy was 83.7% (135/161) for juxta-epithelial ROIs with the 

sensitivity and specificity of 89% and 74%, respectively. Roughly the same 

accuracy (80%, 131/161) was achieved when the classifier was trained on sub-

epithelial connective tissues. Employing the color histogram systems, the best 

results were achieved in HSV system (78% accuracy) using 5-fold CV and kNN 

classifier. 
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1. Introduction 

1.1. Medical Background 
 

The incidence of cancer in the oral cavity (mouth, tongue, and pharynx) is dramatically 

increasing every year. Even though only five percent of all types of known cancers belong to 

the head and neck area, 30 percent of them are diagnosed in the oral cavity. In other words, 

oral cavity is the most frequent site of head and neck involved with the abnormalities 

affecting the oral mucosal membrane [AHNS, 1998; Paul et al., 2005].  

 

The number of diagnosed oral malignancy varies from one country to another.  India is one 

of the countries with the highest rate of reported oral cancers, possibly due to the excessive 

use of a specific type of smokeless tobacco and beetle nut.  According to a typical statistic, 

estimated incidence of oral cancer in the United States is roughly 35,000 cases per year, 

with the mortality of 8000, approximately representing one death per hour. However, 

considering the worldwide statistics the predicament gets more significant since over 

400,000 new cases are diagnosed with oral cancers each year [Kanwar, 2009; 

Brickley,1996], with the slightly higher prevalence reported among men (12%) in 

comparison with women (8%). Also, the reported incidence has been higher within the age 

groups above 45 [Kanwar, 2009]. 

 

The major predisposing factors for oral mucosal carcinoma are the excessive use of the 

tobacco products, heavy alcohol consumption and cigarette smoking. Beside life style 

factors, exposure to sunlight, being male, increased age, and being infected with human 

papilloma virus (HPV) can increase the risk for oral cancers, too. However, the main 

etiological factor of oral cancer is still remained as an enigma [NCI Committee, 2009]. 

 

The evaluation and diagnosis of oral mucosal lesions is primarily performed by a complete 

clinical examination. This should include a comprehensive physical examination by not only 

looking at the suspicious area of the oral cavity (visual examination), but also a palpation of 

the oral cavity exterior. Usually this is done for the entire head, neck and intraoral area in 
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order to check if the cancer is speared or not.  Following the completion of clinical 

examination, sometimes, a CT scan or MRI or both is advised to rule in or out any other 

underlying tissue. This can also help to specify the scope of the lesion [Epstein, 2002]. In 

some pre-cancerous and asymmetrical cases, it is a challenge for physicians to establish a 

firm diagnosis, since the clinical appearance is not diagnostic alone [Epstein, 2002; Kanwar, 

2009] for the oral lesions which may resemble clinically. For such doubtful cases, a biopsy -

based on the histopathological assessment of the target area- is often advised to be sent to a 

pathologist. This would help to confirm or reject the clinical diagnosis. However 

establishing a definitive diagnosis is yet vague as there is a lack of objectivity on the 

histological interpretation. This makes the diagnosis outcome to be highly dependent on the 

pathologist who might fail to set up an accurate diagnosis [AHNS Committee, 1998; Epstein, 

2002]. 

 

A vast majority of the precancerous oral lesions proceed to cancer or reach the advanced 

stages before they are diagnosed. In most cases, this situation is due to the late diagnosis of 

the abnormality, especially for the asymptomatic lesions, and might be caused by either a 

delayed report from the patients or by the clinicians/dentists who have failed to diagnose 

the premalignant lesion in its early developing stages [Epstein, 2002].  

 

The potential premalignant lesions rising in the oral cavity area may show different 

symptoms. However, the most common one might be the painless, non-healing patches on 

the surface of the tong, inner cheek or mouth. This symptom is one of the key factors in 

remaining the early stage cancers and precancerous lesions unnoticed until they develop to 

the advanced levels. The patient may even disregard other signs such as color or tissue 

changes of the oral mucosal [Kanwar, 2009; AHNS Committee, 1998]. Two of the most 

common and premalignant disorders of the oral cavity are Oral Lichen Planus (OLP) and 

Oral Submucous Fibrosis (OSF). They arise from the Normal Oral Mucosa (NOM) tissues and 

have the potential to progress very rapidly.  
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Oral Lichen Planus (OLP) is a chronic inflammatory disease affecting the oral mucosal 

membrane (Figure 1.1). It still has no definite etiology and cure; however one may control it 

by medications. Usually OLPs have different clinical presentations but typically resemble at 

microscopic level. Although OLPs appear as white lace-like patches on the lining of the 

mouth and in many cases may be diagnosed clinically, they still represent six different 

clinical forms which might vary for each individual case. Histopathological diagnosis of OLP 

is based on the interpretation of the oral epithelial and underlying connective tissue. 

Concurrently, clinical and histological features of OLPs can establish a more accurate 

diagnosis; however both features have remained enigmas yet [MFMER, 1998; Rhodus et al., 

2003]. 

 

Oral Submucous Fibrosis (OSF or OSMF) is a chronic enfeebling precancerous disorder 

affecting the oral cavity with highly potential risk of developing to cancer, in which the sub 

mucosal tissues are involved with an inflammation and progressive fibrosis bands (Figure 

1.1) [Lountzis, 2009]. As the disease progresses, theses fibrosis bands become stiff, creating 

a palpable rigid surface on the oral mucosal. In advanced levels, the patient will eventually 

find difficulty in opening the mouth. The main etiology of OSF is not recognized yet. 

However, in Indian subcontinent, the habit of chewing tobacco products in combination 

with areca nut and betel leaf is understood as the main reason of OSF incidence especially 

among youths [Paul et al., 2005]. 

 

a.  b.  

 

Figure 1.1: Typical color images from a) Oral Lichen Planus (LOP) lesion, b) Oral Submucous 
Fibrosis (OSF) lesion 
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1.2. Motivation 
 

Evaluation and investigation of oral mucosal lesions is primarily relying on the visual 

examination, followed by a histopathological evaluation of the suspicious area.  Although 

this plays a critical role in the early detection of the premalignant lesions, the obtained 

diagnosis will almost certainly be subjective and dependent on the pathologist’s knowledge, 

experience and interpretation. Lack of objectivity in identification of the premalignant oral 

lesions, may bring about high error estimates and less reliable diagnosis. So, the clinical and 

pathological evaluations cannot be investigative alone. In addition, as there is a high rate of 

malignant transformation in potentially precancerous oral lesions, it is so essential to 

identify the presence of such lesions before they reach the advanced levels. Consequently, 

there would be a necessity for developing a computer aided diagnosis system to assist the 

oral specialists to establish a more reliable diagnosis of the oral cavity lesions.   

 

1.3. Goal 
 
The list of different types of lesions or abnormalities, ranging from benign to cancerous, 

investigated within the area of human oral cavity is quite extensive. Many of these lesions 

can be diagnosed by the routine clinical examinations. However, some cases, such as Oral 

Lichen Planus (OLP) and Oral Submucous Fibrosis (OSF), are more elusive and challenging 

to be distinguished. In this paper the focus will be on the evaluation of these two common, 

potentially premalignant lesions. We propose to develop a Computer Aided Diagnosis 

(CADx) system based on investigation and classification of the OPL and OSF case samples 

from a viewpoint of Normal Oral Mucosa (NOM). Such a system may be used as a support 

tool to assist the clinicians to improve their daily diagnosis or as a computerized analysis 

tool to assist oral specialists. 
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1.4. Previous Work 
 

To date, few studies have been carried out toward identification of oral conditions/diseases 

from histopathological findings. An attempt in the field was done by Abbey et al. [Abbey et 

al., 1995]. They investigated the presence of epithelial dysplasia on 120 oral biopsies 

examined by six board-certified oral pathologists. The diagnoses were based on the 

histopathologic information of oral epithelial dysplasia (OED) - no clinical findings were 

submitted. They reported an agreement of 50.5% between oral pathologists’ diagnoses with 

the original sign-out diagnosis and 81.5% of agreement regarding the presence or absence 

of epithelial dysplasia. Adding the clinical information to the current experiment [Abbey et 

al., 1997] even decreased the accuracy and consistency of the diagnoses made by oral 

pathologists. Another study was carried out by Zerdoner [Zernoder, 2003] on Ljubljana 

classification which is a system for grading of laryngeal lesions. He proposed to evaluate the 

applicability of the system to classify the oral cavity lesions based on their histological 

changes in the epithelium. The conclusion of his study on 135 oral lesion biopsies turned 

out that Ljubljana can be used as a reliable grading system for classifying the oral epithelial 

lesions. Paul and his coworkers [Paul et al., 2005] designed a CAD system based on wavelet 

artificial neural network for identification of precancerous oral tissue (OSF) from normal 

stages, using transmission electron micrographic images of collagen fibers. They reported 

that the properly classified cases in their proposed technique have always been greater 

than 50%. 

 

1.5. Structure of Thesis Report 
 

The whole thesis report is organized in 4 chapters, appendices and finally references. 

Chapter 1 is the introduction part of the thesis. It gives a brief medical background of the 

oral cavity lesions, the thesis motivation and the thesis goal. Chapter 2 starts with the 

depiction of the material, followed by the description of the features investigated in this 

project. Next, the principle of the two classification algorithms, including the kNN and SVM, 

are concisely explained. Finally, different alternative approaches for estimation of the 
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classifier performance are briefly discussed in this chapter. In chapter 3 we present the 

experimental results obtained from the implementations in Matlab together with the 

general discussions. Finally, Chapter 4 follows the conclusion and proposed future work. 
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2. Materials & Methods 

2.1. Materials 
 

The biopsy specimens analyzed in this study have been taken from the patients who were 

referred to the departments of oral pathology at Govt and Sharad Pawar dental colleges and 

hospitals in Wardha and Nagpour, India. All biopsy samples have gone through a routine 

light microscopic examination subsequent to a process of staining by aqueous haematoxylin 

and eosin. Next, in order to avoid the human bias and also verify the previous diagnosis 

made by clinicians/physicians, four oral histopathologists have performed a 

histopathological evaluation process on available samples. The histopathological images 

have been recorded with typical resolution of 10x by using Olympus BX51 Research 

Microscope with attached Olympus DP71 Camera and acquired by means of ‘Cell^D’ Image 

Analysis Software.  

 

Totally, 36 numbers of histopathological oral mucosal images were investigated in the 

present work. The entire cases were categorized into three individual classes, namely, 

Normal Oral Mucosa (NOM), Oral Lichen Planus (OLP) and Oral Submucous Fibrosis (OSF). 

Table 2.1 summarizes the number of existing samples per class and their corresponding 

number of extracted ROIs. The classification problem was regarded as a 2-class problem, 

considering healthy tissues (NOM) against the pre-malignant lesions (OSF/OLP), since this 

case is amongst the most challenging diagnosis for oral specialists to distinguish. Figure 2.1 

shows some typical histopathological images representing three oral cavity conditions 

investigated in this study.  
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a    
 
 
 
 
 
 
 
 
 
b    
 
 
 
 
 
 
 
 
 
c    
 

Figure 2.1: Typical histological images taken from oral cavity conditions representing three 
different subtypes; a) Normal Oral Mucosa (NOM), b) Oral Lichen Planus (OLP) and c) Oral 

Submucous Fibrosis (OSF) 
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2.2. Methods 
 

In this section we present the image pre-processing and image analysis steps, which have 

been followed in the current work, toward the classification of histological oral images. The 

overall procedure is demonstrated in block diagram in Figure 2.2. 

 

 

 

 

 

 

 

Figure 2.2: Stages of histological oral image pre-processing and analysis 
 

2.2.1. Regions of Interest 

 

In this work, experienced oral histopathologists have manually marked out the Regions of 

Interest (ROIs) from the histological images of oral epithelial tissues. The first extracted 

ROIs regarded as C1 are placed in the area beneath the epithelial exterior called juxta-

epithelial connective tissue, which are depicted by the yellow rectangles in Figure 2.3 The 

other regions of interest, C2, have been outlined from the epithelial interior area (sub-

epithelial connective tissue), which are demonstrated by the blue squares in Figure 2.3 ROIs 

have been extracted from both lesion areas (OLP/OSF samples) and healthy tissues (NOM 

samples). The areas which are regarded as artifact do not represent any identical properties 

with the two other regions. Consequently, they should be excluded from the training 

database. Because of the low number of currently available samples used in this 

experiment, we have extracted many ROIs regarded as C1 and C2. This way, we could 

increase our training set from a total number of 36 samples to 161 for both juxta-epithelial 

and sub-epithelial regions (Table 2.1). Some examples of the C1 and C2 regions, extracted 

from each individual study case, are presented in Figure 2.4. In this work, we have mostly 

conducted the classification experiments on juxta-epithelial (C1) regions. 
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Table 2.1: Total number of study cases and the corresponding number of ROIs per class  

 
Histological diagnosis # of cases per class # of ROIs per class 

Juxta-epithelial area Sub-epithelial area 
Normal Oral Mucosa (NOM) 14 61 67 
Oral Submucous Fibrosis (OSF) 12 53 42 
Oral Lichen Planus (OLP) 10 47 52 
Total # of cases 36 161 161 

 

 
 

Figure 2.3: An example of oral histological image with the marked out regions of interest: 1) 
yellow rectangles, C1, extracted from juxta-epithelial tissue, 2) blue squares, C2, extracted 

from sub-epithelial tissue. The regions regarded as artifact does not represent any 
discriminative property. 
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a)   1.  2.  3.  

b)   1.  2.  3.  
   

Figure 2.4: Typical histological images representing the NOM, OSF and OLP cases, 
respectively, extracted from a) C1 regions of interest, b) C2 regions of interest 

 

2.2.2. Histogram Generation 

 

In this study we are mainly concerned with the task of analyzing the histogram-based 

properties of the pre-cancerous oral lesions with the emphasis on the variations in the 

shape of the image histogram. The aim is to produce features which are relatively robust to 

small changes in the image. 

 

The first-order color histogram is a graphical representation of the frequency distribution 

of the image pixels. It is essentially a statistical probability distribution of the intensity (or 

gray level) values in an image versus the number of pixels. It contains robust and efficient 

information about the nature of an image which probably contain discriminatory 

information to be used in the field of image classification. Although histograms are 

relatively invariant to small changes such as rotations, translations and scale variations 

which are practical characteristics in image classification, they are lacking the spatial 

information of the object. This means that spatial relations between the pixels of an image 

are lost. So, this may result that many different images with different object contents 

possess similar spatial distributions. The histogram (distribution) value, P(i), of an image 

can be defined as [Sergyan, 2008; Liu and Wang, 2009]: 
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 ( )  
 ( )

 
                                                                   ( ) 

 
where N(i) is the number of pixels at gray level i, considering to have  

   number of distinct gray levels ranging from 1 to 256 in the quantized image, and M 

denotes the total number of pixels in the image. We have normalized the histogram 

value,     so that the summation of histogram values for any specific probability distribution 

will be equal to 1. 

 

In order to reduce the image dimensionality and accordingly simplify the calculations, we 

have primarily performed an rbg to gray scale conversion. We used Matlab rgb2gray 

[MATLAB, 2004] routine on the target areas. The image gray scale values are then 

transformed to 256 histogram bins. The histogram generation procedure is demonstrated 

in Figure 2.5. 
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(1) 

 
 
 
 
 
 
 

 
(2) 

 
 
 
 

 
 

(3.a) 

 

 
(4.a) 

 
 
 

  
(3.b) 

 

 
(4.b) 

 
Figure 2.5: Illustration of proposed procedure toward histogram generation. (1) A typical 
histological image. (2) The corresponding gray scale image. (3) Typical ROIs extracted from: 
a) juxta-epithelial area (C1), b) sub-epithelial area (C2). (4) Histogram generation. 
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2.3. Features 

2.3.1. First-Order Histogram-Based Features 

 

The first-order histogram of an image provides us practical information to be used for 

image texture analysis. Primarily, Swain et al. [Swain & Ballard, 1990] proposed the 

histogram characteristics to be used as one of the main feature descriptors in image 

processing. In this work, we have taken cumulative dark introduced in [Chodorowski, 2009] 

and a number of common histogram based features including mean, variance, entropy, 

energy, skewness, and kurtosis as discriminative features. It should be noted that not all of 

the features contribute equally to image classification. In the followings (section 2.4) some 

techniques for weighting or restricting the feature set are represented [Paul et al., 2005]. 

Below are the definitions of the extracted features: 

 

The mean is a measure of brightness in an image i.e. a very dark image implies a low mean 

value while a bright image implies a high mean value. It calculates the average of intensity 

level distribution of an image and is defined as follows: 

 

  ∑  ( )                                                                          ( )

  

   

 

 

The variance (also equals the square of the standard deviation) tells us something about 

the uncertainty or dispersion of the intensity levels in an image. In other words, variance is 

a measure of the image contrast i.e. an image with high contrast implies a high variance 

value whereas an image with low contrast implies a low variance value.  
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The entropy quantifies the amount of the disorder or randomness of gray scale values in an 

image. A uniform image with more different intensity levels has higher entropy value than a 

simple image. We can define the entropy as follows:  

 

          ∑  ( )      , ( )-
  

   
                                              ( ) 

 

The Skewness is a measure of asymmetry about the shape of the frequency or intensity 

level distribution, and is given by:  

 

           ∑ (    ̅) 
  

   
(   )                                             ( )⁄  

 

where s is the standard deviation (or the square root of the variance) and N denotes the 

number of data points. A distribution will be “positively skewed” if the tail of its histogram 

extends out to the right, and “negatively charged” if the tail of its histogram extends out to 

the left. The skewness can also be defined by the following formula [Pearson, 1895]:   

 

            (      )                                                      ( )⁄  

 

where mode denotes the peak value in the histogram.  

 

The kurtosis measures how flat or peaked the top of the data distribution is, compared to 

the normal (or Gaussian) distribution. A positive kurtosis denotes a flat-topped data 

distribution while a negative kurtosis refers to a peaked data distribution. It can be defined 

as: 
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The energy or Angular Second Moment (ASM) quantifies the homogeneity within the 

texture of an image. The homogeneity of an image will decrease as the number of intensity 

levels increases which corresponds to a smaller energy value. For example, the energy 

measure of a uniform image will be large as the energy of pixels is concentrated in a few 

number of intensity levels. 

 

       ∑, ( )- 

  

   

                                                         ( ) 

 

The cumulative dark [Chodorowski, 2009] represents the number of image pixels which 

their relevant values in the gray scale histogram drops below the center value.  

 

                ∑  ( )                                                    ( )

  
 

⁄

   

 

 

2.3.2. Color Histograms 

 

A more simple approach to image classification based on the image color histogram is to 

directly use the raw histogram bins as input features to the classifier. However, the major 

drawback of this approach in image classification would be the high dimensionality (or the 

number of bins) of input vector. In this work, from different choices of color systems, we 

investigated images in the red-green-blue (RGB) and hue-saturation-value (HSV) color 

spaces and generated their one-dimensional and three-dimensional histograms, 

considering 16 bins per color channel [Chapelle, 1999].  This results in feature vectors of 48 

(16·3) and 4096 (   ) feature indices, respectively.  

  

The RGB color space is obtained by separating the three primary colors of light (red, green 

and blue) into discrete arrays. The frequency of discrete color components is then acquired 

by counting the number of times that each color occurs in the image array. Each color 
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component, with 8 bits of unsigned numbers, is represented in 256 different values, which 

brings about 16.7 million colors.  

 

The HSV color space also represents the color into three components. Hue, the first 

component, determines the angular position (wavelength) of the color. The second 

component, saturation, has the range of 0 to 100 and is an indication of the color depth or 

purity in the image. The saturation value of 0 represents the grey color and as it increases 

towards 100, the gray shade decreases in the color space and the color tends toward a 

primary color. The third component, value (also known as intensity), describes the 

brightness of the color space. The hue and saturation components (color information) are 

separated from intensity component (luminance). Compared to RGB system, HSV space 

remains roughly unchanged under illumination changes. In the sense of human perception 

of colors, the HSV color system is more frequently used than RGB space [Surak, 2002].  

 

2.4. Feature Selection 
 

One of the main tasks in a pattern recognition problem for data mining, before designing the 

classifier, is feature selection. The idea of feature selection is to identify a subset of features 

of potential interest, relevant to a particular application, which represents the best 

performance under some classification systems [Vandewalle et al., 2003]. This procedure 

reduces the feature space dimensionality by choosing the relevant features from a large set 

of possibly redundant or irrelevant candidate features based on some criterions. Some 

advantages of applying the feature selection techniques in the machine learning problems 

can be stated as constructing more robust CAD tools, achieving better classification 

accuracy, improving generalization performance, and speeding up the process of data 

mining. In addition, it can compensate the effect of finite sample size, especially in the 

medical CAD systems, by eliminating the useless features and reducing the size of the 

structure [Miyamoto et al., 2003; Yuan et al., 1999]. We performed a supervised feature 

selection, as the entire samples used in this study are pre-labeled. 
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The problem of feature subset selection can be formulated as follows. Let’s denote the size 

of entire feature set by N, the original feature vector by    *          +, and the 

optimized feature subset vector of size M by    **  ( )   ( )     +          +. Here, 

the task involves finding out a searching strategy which determines a good subset of 

features. In statistical subset selection, a “good” subset usually means the subset which 

optimizes the objective function J(y) and results in the highest classification accuracy [Kim 

et al., 2006]. 

 

[
 
 
 
 
 
  

  

 
 
 

  ]
 
 
 
 
 

                 [

  ( )

  ( )
 

  ( )

]                                                  (  ) 

 
          , *          +-                                           (  ) 

 
To find out the best feature subset of size M, one requires checking up 

 

⟨
 

 
⟩   

  

  (   ) 
                                                       (  ) 

 
number of examinations. Totally, there are    number of possible subsets from N features 

[Jain & Zongker, 1997].  

 

Depending on whether or not the feature subset selection is reliant on the classifier 

performance, the existing approaches can be separated into filter and wrapper algorithms. 

In filter approach the effect of any prediction method on selecting the features in not taken 

into account. This method is on the basis of relevance or discrimination power of the 

features and separability of clusters. It filters the irrelevant features based on the feature 

selection criterion. On the other hand, in wrapper approach the predicted accuracy directly 

relies on the usefulness and discrimination power of the features. A certain classifier is 

employed to select a subset of features by usually performing an exhaustive search for all 
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possible feature combinations. Usually filter approach outperforms the wrapper approach 

[Liu et al., 2005; Yuan et al., 1999]. 

 

Tow general wrapper approaches to feature subset selection are sequential forward 

selection and sequential backward elimination methods. In sequential forward selection, we 

start with an empty feature vector and continue with adding up the features one by one. At 

each step, the feature which represents the best accuracy is selected. This is continued until 

any additional feature does not lead to significant reduction in the classification error. In 

sequential backward elimination, we start with the entire set of features and at each step 

remove the feature which leads to the most decrease in the classification accuracy. This is 

continued until no further removal improves the accuracy significantly [Sewell, 2007]. 

 

In this work, we performed a sequential forward selection on the histogram-based features. 

All possible combinations of features were evaluated through an exhaustive search. Out of 

the available combination of features, the subset consisting of the entropy, mean, skewness, 

and variance produced the best classifier’s performance. The 5-fold cross validation error 

was chosen as error estimation criterion.  

 

2.4.1. Feature Normalization 

 

The normalization of the entire feature vector was performed in order to set the variance 

and mean of all training samples, corresponding to the     feature attribute, to one and zero, 

respectively. This results that all attributes in different numeric ranges weight relatively the 

same. The advantage is that even the large attribute values will, therefore, place in a finite 

numeric range and will not dominate the ones in smaller ranges [Chih-Wei, 2009]. 

Normalization was performed according to the following formula:  

 
 ̃  (     )   ⁄                                                     (  ) 

 

where  ̃  is the normalized feature attribute,    and    denote the mean value and standard 

deviation of     feature value, respectively, and m is the total number of features. 
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2.5. Classifiers 
 

Although the selected feature sets have the greatest influence on the result of the 

classification performance, the choice of classifier can also play a critical role in the final 

result.  Currently, there are over 200 different choices of classifier types [Axell, 1976] 

including parametric and non-parametric classifiers for supervised classification. Usually, 

depending on the classification problem, a certain classifier might be chosen. In the current 

work, the data was not well-separated. Accordingly, we selected the k-nearest neighbor (k-

NN) as non-parametric and support vector machine (SVM) as parametric classifier.  

 

2.5.1. k-Nearest Neighbor 

 

The k-Nearest Neighbor (kNN) decision rule is one of the commonly used classification tools 

in pattern recognition problems. It is based on the distance between the training data points 

from the feature vector   ,        - and a particular unknown data object (which is to 

be classified)      
  ,          , in a d-dimensional feature space   . In kNN algorithm an 

unseen data is classified by election of its neighbors. Here, the task is to define the class 

label of test data by means of a particular metric which is usually the Euclidean distance 

defined by: 

 

 (      )   √∑(         ) 

 

   

                                              (  ) 

 
where    and   are two sample points in the feature space.                   

       

The performance of kNN classifier is to some extent determined by the selection of an 

appropriate k value (the number of nearest neighbors to sample test data,   ) which might 

be challenging. The majority vote defines the true class label of   . Normally larger value of 

k leads to a system with more immunity to noise. Figure 2.6 gives an example that depicts 

the choice of k parameter on prediction of class label of query point (green circle). To find 

the true class for an entry test data the classifier calculates all Euclidean distances from this 
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test data and all pre-labeled training data. The distances are then arranged in an ascending 

order matrix. The shortest distance represents the right class to which the unseen data 

belongs to [Song et al., 2007]. 

 

          

 

 

 

 

 

 

Figure.2.6: Example of k-nearest neighbor (kNN) classifier; choice of k parameter to decide 
which classes the query object (green circle) belongs to. The object will be classified as a 

rectangle if k=3, but as a rectangle if k=5. 
 

The routine for the kNN classifier trailed in this project is as follows (assuming an M-

dimensional training category and assuming to have one test sample to be classified at a 

time): 

 

1. Calculating the Euclidean distance between the test data and the entire set of 

training data  

2. Sorting the obtained Euclidean distances in an ascending order in a distance matrix 

3. Determining to which class the k nearest distances are associated to (counting the 

number of votes) 

4. Classifying test data to the class that was counted the most in step 3 

 

One of the advantages of the kNN classifier is being compatible for multi-modal classes as 

its classification decision is based on a small neighborhood of similar objects. So, even if the 

target set is multi-modal (i.e. contains objects whose independent variables have unlike 

characteristics for unlike divisions), it can still classify with high accuracy. The main 

drawback of this method is being computationally slow and complex as it calculates the 
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distances between the test data and all training data. In applications with large number of 

training data this method can be rather slow. 

  

2.5.2. Support Vector Machines 
 

The Support Vector Machine (SVM) is a commonly used technique for statistical 

classification of data, introduced by Boser, Guyon and Vapnik in 1992 [Cortes & Vapnik, 

1995]. It parameterizes the distributions. The classification problem, for an M-dimensional 

feature space, involves a set of training points (     ),   *     +     ,            and  

where each data instance    contains a target value (class label),   , and several attributes 

(features) [Hsu et al., 2009]. The data point xi belongs to either two of the classes depending 

on its attributes. The main objective of the binary SVM algorithm is to construct a hyper 

plane in such way that data points with the same target values place on the same side of the 

hyper plane. A good generalization performance (the ability to accurately classify an unseen 

data) is achieved within the maximum separation margin between two classes. The optimal 

separating hyper plane (optimal decision function, f(x)) is defined by:  

 

 ( )     (∑      (    )   

 

   

)                                           (  ) 

 
where  

 

 

 (     )   (  )
  (  )                                                 (  ) 

 

is a symmetric positive function called kernel. b is the bias or threshold parameter and    

are Lagrange multipliers, obtained from the  following quadratic programming (QP) 

optimization problem: 
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 ( )  ∑  

 

   

  
 ⁄ ∑∑         (     )

 

   

 

   

                                 (  ) 

 
and must be maximized under the following constraints: 

 

∑    

 

   

                                                     (  ) 

 
where C > 0 is the SVM-regularization or penalty parameter of the error term, specified by 

user. To achieve a better generalization performance in a SVM classification problem, C 

parameter shall be chosen appropriately. The amount of overlap between classes can be 

controlled by this term. Although there is a trade-off between the classification error and 

the complexity of decision rule, one may control this by changing the value of C. Large 

values of C will result in a complex boundary surface that is too fit to training data but may 

not to unseen data. Contrary, low values of C will result in a simple boundary surface and a 

high classification error [Cortes & Vapnik, 1995]. Another challenge, when designing a SVM 

classifier, is to find an appropriate kernel function that has a critical effect on SVM 

performance. Some of the most commonly used kernel functions are given in Table 2.2. 

Usually, Gaussian or polynomial kernels are considered as default options [Vapnik, 1999].  

 
Table 2.2: Kernel Functions 

 

Kernel type Function 

Polynomial 
 

(     )  

Gaussian  
 

    ( ‖   ‖    ⁄ ) 

Laplace 
 
   (  ‖   ‖ )      

Sigmoid neural network 
 

    (      ) 
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Here σ, d and 𝛶 are input kernel parameters to SVM training process. For each particular 

application, the kernel parameters must be tuned to fulfill the sufficient classification 

performance [Jakkula V]. 

 

The most frequently used kernel functions are Gaussian Radial Basis Function (RBF) and 

Polynomial kernel. The Polynomial kernel is usually used for non-linear modeling e.g. in 

SVM kernel machines which produce the maximum margin by using all mapped features in 

the polynomial mapped feature space. As there is still no certain way to find the best kernel 

type, we randomly tried a few kernels with varying their kernel parameters e.g. kernel 

width (σ) in Gaussian, polynomial degree (d) in polynomial kernel and ρ (offset) in sigmoid 

kernel.  

 

Producing an optimal decision function, which is to minimize the classification error by 

accurately classifying the unseen data, is based on the theory of structural risk minimization 

(SRM) principle. Following this principle, minimization of expected risk  ( ) of unseen data 

involves minimization of both empirical risk     ( ) and Vapnik-Chervonenkis (VC) 

dimension h (terms 1 and 2 in eq. 17). Expected risk  ( )is defined as [Vapnik, 1999; 

Axelberg et al., 2007]: 

 ( )  ∫(   (   ))
 
  (   )                                           (  ) 

 
where y denotes the output vector associated for an input example x, P(x, y) is a fixed but 

unknown distribution function , and f(x, α) are set of functions implemented by learning 

machine with respect to α Λ. The aim is to find the function f(x, α), in such way that  ( ) 

will be minimized. 

 

The Empirical risk and the SRM principle respectively are defined by: 

 

    ( )   
 

 
∑(    (   ))

 
 

 

   

                                      (  ) 
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 ( )      ( )  √
 (  ((   )   )    (  )⁄⁄

 
                        (  ) 

 
where N is the number of training examples, η denotes a confidence measure and h denotes 

VC-dimension.  

 

2.6. Estimation of Classifier Performance 

2.6.2. Overall Classification Rate 

 

Following the selection of an informative subset of features and designing an efficient 

classifier, estimation of performance criteria is the next step involved in a pattern 

recognition problem. It is an essential but quite difficult task to predict the classifier’s 

performance under the constraints of the available finite dataset and unknown probability 

distribution of the dataset [Sahiner et al., 2007; Fukunaga & Hayes, 1989 (b)]. The finite 

dataset itself may lead to biased estimates (difference in error estimations). 

 

The classifier performance is primarily based on the relationship between the number of 

available samples and the classifier dimension (number of features). It is beneficial to 

construct the classifier with the larger and more representative samples. However, in a 

practical pattern recognition problem, particularly in the development of a medical CAD 

system, the sample size is limited. Therefore, it is the designer’s task to decide on the 

number of samples to be used for training the classifier and for testing its performance. The 

datasets should be independent but representing the same probability distribution. For 

example, large number of training samples together with a small amount of testing samples 

may result in a reliable classifier but unreliable performance estimation [Sahiner et al., 

2007; Chan et al., 2004; Estimation of Classifier Performance_1]. In contrast, a large 

dimension of feature space often has a disadvantageous effect on the performance of the 

classifier. This may be explained by potentially correlated and less diagnostic features 

[Mazurowski et al., 2007]. 
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The error rate estimation is a practical way of representing the classifier performance. It is 

defined as the mean probability of the counted number of misclassified unknown samples 

  ̂  (the test samples with incorrectly predicted class labels) over the entire   test samples 

drawn from the probability distribution D [Fukunaga & Hayes, 1989 & 1990]. 

 

  ̂  
 ̂ 

  
                                                                            (  ) 

 

Total probability of error rate can be defined as follows: 

 

 ̂  ∑  

 ̂ 

  

 

   

                                                                       (  ) 

 

where           denotes the label of observations and    denotes the priori probability 

of distribution   . Here we assumed that the designing and testing samples are 

independent. Thereby, the estimated error rate  ̂ is unbiased and its expected value will 

be  * ̂ +   . The predictive accuracy  ̂ is then defined as the percentage of the corrected 

classified instances, likewise: 

     ̂                                                                         (  ) 

 

To achieve a robust and consistent estimation of the classifier performance, the variance of 

the true error rate is provided, and is given by: 

 

   * ̂+  ∑  
 
  (    )

  

 

   

                                                      (  ) 

 

One of the practical limitations associated with the performance prediction of the classifier 

is the effect of sample size on the error evaluations. It is a challenge to decide on the 

number of samples which should be used for designing and testing the classifier. This issue 
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is more dominant when constructing the medical CAD systems, since the sample size is 

relatively small. Depending on how the data divisions are made, there are different 

alternative approaches to performance prediction. They are called resampling techniques 

which are divided into resubstitution and three types of cross validation methods, namely, 

the hold-out, k-fold and leave-one-out cross validation. The effect of dependent training and 

test sets is identified in the resubstitution and leave-one-out methods, while in the hold-out 

method the training and test sets are completely separated [Fukunaga & Hayes, 1989 (a); 

Sahiner et al., 2007; Varma & Simon, 2006]. 

 

Resubstitution method: Testing the classifier model on the original design samples which 

have already been used for training the classifier gives the resubstitution error rate. The 

estimate of the error rate is optimistically very low (usually zero), since it is basically made 

from the design samples. Therefore, the evaluations do not indicate the performance on the 

unseen data and represent only some knowledge regarding the performance of the used 

algorithm. For small datasets this method may consequent to poor generalization ability, 

while for large datasets it shows good results. 

 

Hold-out cross validation (HOCV) method: is the simplest type of cross validation method 

in which the entire data set is split into two disjoint training and testing groups. Usually, 

two third of the data is used for training and the remainder is used for testing. To make the 

estimates more consistent and reliable, different sub samples are randomly selected and 

used for training and testing during some repeated iterations. Different error rates will be 

made from different divisions of data set. In the other words, the error estimates are so 

dependent on the data partitioning and thus the variance is relatively high.  

 

k-fold cross-validation method: is an improved type of the hold-out method in the sense 

that the data points are used more efficiently. The data set is split into k subsets of 

approximately equal size. Each time, one subset is used as testing and the remaining (k-1) 

samples are merged to create the training set. This process is repeated k times. Then the 

error estimates are averaged across all k trials to yield the k-fold cross validation error rate. 
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According to the theoretical evidences, the best choices for k are 5 and 10 to get good 

results. However the variance will reduce as the number of k increases. In medical 

applications where the number of database is usually too low, the main drawback of k-fold 

cross validation would be the incompetent use of data. It is because each time only 1/k of all 

available data is devoted for training which is really few for the classifier design. 

 

Leave-one-out cross validation (LOOCV) method: is a specific type of k-fold cross 

validation in which k is replaced to n (the total number of available samples). It means (n-1) 

samples design the classifier model and the prediction process is made for the left-over 

point. This process is repeated n times until all points are used for testing. This way, we will 

make the best use of our data points. The misclassified test points are then counted from 

the individual iterations and averaged to evaluate the overall error rate. The LOO cross 

validation method gives good evaluations of the model. However, it is usually 

computationally extensive when the number of database examples is high. The LOO 

estimate is not dependent on the classifier model or distribution of data, but its variance is 

quite large. 

 

2.6.2. ROC Analysis 

 

Receiver Operating Characteristics (ROC) curve has been introduced in machine learning as 

a robust way of estimating the performance of a classifier. ROC curves provide us the 

possibility to tune the performance of our trained classifier based on its corresponding 

trade-offs. In some applications such as medical diagnosis, it is more realistic to use ROC 

analysis than other commonly used measures for evaluating a classifier performance such 

as accuracy and error. This is because in such situations, ROC analysis decomposes the 

performance of a classifier into true positive (TP) and false positive (FP) fractions.  

 

Considering a binary classification, for each instance there are four possible outcomes in 

general: true positive (TP) indicates the number of negative instances (or abnormalities in 

medical applications) which are correctly predicted, false positive (FP) indicates the 
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number of positive instances which are incorrectly predicted, false negative (FN) is the 

number of negative instances that classifier has wrongly predicted and true negative (TN) 

denotes the number of correctly classified positive cases. This situation, represented in 

Figure 2.7, is known as contingency table or confusion matrix [Qin, 2005]. 

 

 Classifier Predicted labels 
Positive predictions 

(NOM) 
Negative predictions 

(OLP/OSF) 
 

Correct predicted 
labels 

Positive cases 
(NOM) 

True Positives 
(TP) 

False Negatives 
(FN) 

Negative cases 
(OLP/OSF) 

False Positives 
(FP) 

True Negatives 
(TN) 

 

Figure 2.7: Format of a confusion matrix representing the four possible classifications of data 
instances from a binary classification 

 
The classical performance metric derived from the above 2 class confusion matrix is a 

function of true positive rate (TPr) versus the false positive rate (FPr). However, there are 

several other alternatives derived as performance metrics. In medical applications, two of 

the commonly used performance measures are known as sensitivity and specificity defied 

as: 

            
  

     
                                                         (  ) 

            
  

     
                                                         (  ) 

 

The optimal operating point for the classifier in the ROC space would be obtained at the 

upper left point (0, 1). This point denotes the high accuracy where the sensitivity and 

specificity have their maximum values. Points falling under the diagonal line (which 

connects (0, 0) point to the (1, 1) point) denotes low sensitivity i.e. the classifier fails to 

detect the disease when it exists and low specificity i.e. the classifier misclassifies the 

disease when it does not exist. Area under the ROC curve (AUC) is another alternative for 

estimating the classifier accuracy. However, AUC mainly depicts the range of false positive 
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examples, while in medical diagnosis applications we desire the area with high sensitivity 

(true positive cases) [Paclik, 2008]. 
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3. Results 
 

This section represents the best classification results which are achieved under different 

conditions with SVM and kNN classifiers using various error estimation methods. In all 

classification tests performed in this work (considering a 2-class problem) the potentially 

precancerous lesions (OLP/OSF class) were labeled as {+1} and the healthy cases (NOE 

class) as {-1}. We implemented the experiments in Matlab environment and used Steve 

Gunn’s toolbox in case of SVM classifier [Gunn, 1998]. 

 

3.1. Feature Selection                      
 

To select a subset of features for improved discriminatory ability, we performed a wrapper 

approach by using forward selection algorithm for all possible subsets consisting of one to 

eight features. The best classification accuracy 83.7% (135 corrected classified samples out 

of 161) was observed for the subset of four features (including entropy, mean, skewness, 

and variance). As shown in Figure 3.1, adding more features to the current subset even 

degraded in classification performance possibly due to the irrelevant or less discriminative 

features. The experiment was performed using the 5-fold cross validation error and RBF-

SVM classifier (σ=0.5, C=100). The same experiment for sub-epithelial area returned 

roughly the same results (classification accuracy = 84%). 

 

The scatter plot (a 2-dimensional representation of data distribution) for two of the most 

discriminative features (entropy and mean) is illustrated in Figure 3.2. The scatter plot 

implies that the precancerous samples build almost separated clusters whereas there is 

comparatively higher correlation between precancerous and healthy samples. This 

approves the physician’s claim on considering the classification problem of healthy samples 

vs. the precancerous lesions as the most challenging diagnosis in the content of oral cavity 

diseases. To provide a better visualization perception of the data distribution and, 

moreover, to perceive how complex or simple the separation margin is, a 2-dimensional 

decision boundary is represented in Figure 3.3. The undesired island-like regions could be 
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the result of a few misclassified samples which disturb the clusters and lead to very 

complex boundaries.  

 

 
Figure 3.1: Best result obtained from 5-fold cross validation error rate vs. the number of 

histogram-based features, using RBF-SVM classifier (σ=0.5, C=100), two class problem (61 
numbers of healthy samples vs. 100 numbers of premalignant lesions). The lowest error rate 
(16.3%) belongs to the subset of subset of four features (including entropy, mean, skewness, 

and variance) 
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           (a) 

 

 

 
           (b) 

 
Figure 3.2: A typical scatter plot using two features (entropy and mean) for a) 3-class 

problem, b) 2-class problem (healthy samples vs. premalignant lesions). 161 samples are 
taken from juxta-epithelial area and classified using RBF-SVM (σ=0.5, C=100) classifier. 

 
 
 

 
 

Figure 3.3: A typical decision boundary using 2 features (entropy and mean), exponential rfb-
svm classifier (σ=1), 2-class problem (healthy samples vs. premalignant lesions), 161 

samples, juxta-epithelial area, nsv (number of support vectors) = 79(49.1%). 
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3.2. Classifier Design                      

3.2.1. Estimation of “C” Value    

 

One cannot know beforehand which parameter C (eq. 18) will be the best for a classification 

problem. So, we did a grid search on C, using all available samples (161) extracted from 

juxta epithelial area, to identify the one with the best prediction accuracy. Three alternative 

error estimation methods, 5-fold cross validation, resubstitution and leave-one out, have 

been used (Figure 3.4).  

 

 
 

Figure 3.4: Error measures versus penalty parameter C based on the different error rate 
estimations. RBF-SVM: σ=1, dim=4 (features: entropy, mean, skewness, and variance), juxta-

epithelial area, two class problem (61 NOM cases vs. 100 OSF/OLP lesions) 
 

Figure 3.4 suggests that the resubstitution error can possibly behave optimistically for this 

classification problem (since all samples are devoted for the classifier design, so the error 

does not measure any unseen data). Thus, this measure could not be sufficient alone to 

judge on. Based on the LOO-error and 5-fold cross-validated error, the best classification 
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accuracy was achieved with C=102. However, 5-fold curve also had another minimum 

corresponding to C=106. 

 

3.2.2. “Kernel” Selection  

   

Once the penalty parameter C was chosen, we investigated for the right kernel function (eq. 

16). To date, there is no theoretical method to find an appropriate kernel function for a 

particular problem. Therefore, we randomly evaluated a few kernels (mentioned in Table 

2.2) with varying their kernel parameters e.g. kernel width (σ) and polynomial degree (d). 

The average SVM results for kernel parameter versus penalty term C are presented as 

percentage in Table 3.1.  

 

Table 3.1: Choice of kernel function based on the various penalty parameters C, polynomial 
degree (d), and kernel width (σ) for SVM classifier, dim=4, two class problem (61 NOE 

samples vs. 100 OSF/OLP lesions), and 5-fold cross validation error 
 

Log(C) -2  0 1 2 4 6 
Kernel nsv Err nsv Err nsv Err nsv Err nsv Err nsv Err 
Linear 99 38 91 43 86 45 85 45 85 45 85 45 
RBF σ=0.5 129 27 87 25 66 23 58 27 56 27 33 27 
RBF σ=1 129 35 78 30 54 18 40 17 55 18 39 15 
RBF σ=2 129 45 91 35 62 32 46 30 106 25 48 37 
Poly d=2 95 30 59 33 48 33 92 32 15 35 3 35 
Poly d=3 87 31 48 21 49 19 75 15 12 44 3 44 
Poly d=4 75 33 41 17 53 22 62 23 38 22 10 32 
Poly d=5 65 26 48 22 49 22 48 23 29 22 9 22 

 
From Table 3.1 we observed that the minimum classification errors were obtained with 

RBF-SVM and kernel width σ=1. The other kernels produced relatively higher error rates. In 

case of polynomial kernel, for a constant C value, higher polynomial degrees returned lower 

error rates and lower number of support vectors (nsv). However, for constant polynomial 

degrees, some minimum was achieved in the middle range of the parameter C (e.g. 102); 

meaning that an average value of C could be appropriate to define the separating hyper 

plane. Once the parameter C and kernel function are determined, the classifier can be 

designed based on the identified optimal hyper plane.  
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3.3. Classification Results       
         
Intended for a practical comparison between different classifiers and also to evaluate the 

performance of classifiers, we constructed the Receiver Operating Characteristic (ROC) 

curves. By varying the bias b term in eq. 15 some operating points on ROC plane (False 

Positive rate (FPr, 1-specificity) versus True Positive rate (TPr, sensitivity)) were obtained. 

The final ROC curve is actually composed of the mean TPr and FPr trials.  

3.3.1. ROC Curves Using Histogram-Based Features 

 
Figure 3.5 represents ROC curves for three classifiers. 5-fold CV error, resubstitution error 

and all data samples from juxta-epithelial area have been used.  We observed that the ROC 

curve for resubstitution error was over-optimistic and possibly resulting in an over trained 

classifier. The ROC curves for the two other classifiers showed relatively the same 

performance as they both represented roughly 90% sensitivity at specificity around 70%. 

However, rfb-SVM (C=100) performed slightly better than kNN. It showed more increase in 

sensitivity with decreasing the specificity and reached the operating point with 100% 

sensitivity earlier than kNN. Nevertheless, most likely because of the insufficient number of 

the samples in our database, this performance difference between the two classifiers cannot 

be considered as a statistically significant difference [Paclik, 2008]. The total classification 

accuracy reached a level of 81.4% (131 out of 161, 5-fold CV) compared with the regular 

way of measuring classification accuracy (counting the number of misclassified cases and 

averaging the result) that was 83.7%. 
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Figure 3.5: Receiver Operating Characteristic (ROC) curves for kNN classifier (k=5), RBF-SVM 
classifier (σ=1, C=102), dim=4 (selected features: entropy, mean, skewness, and variance), 5-

fold cross validation, and resubstitution error. Two-class problem: NOM (N1=61) vs. 
OSF/OLP (N2=100) for juxta-epithelial area. 

 

3.3.2. ROC Curves Using Color Histograms 

 

For the sake of a new experiment, it was of interest to investigate the performance of the 

classifier built on the raw histogram bins served as input features to the classifier. We 

proposed to investigate the discrimination power of the two commonly used histograms, 

RGB and HSV color spaces. Considering 16 bins per color channel, we got a feature vector of 

4096 entries (or 4096 partitions on the color space) for three-dimensional histograms 

(16^3), and 48 entries for one-dimensional histograms (16·3). Figure 3.6(a) illustrates the 

ROC curves for one- and three-dimensional RGB and HSV histograms using different 

classifiers. Their corresponding diagrams representing the total classification performance 

are shown in Figure 3.6(b). 
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(a) 
 

 
(b) 

 
Figure 3.6: a) ROC curves for: 1D-RGB histogram (dim=16*3)  using sigmoid-SVM (ρ=1, 

C=100) and linear-SVM (C= 100) classifiers; 3D-RGB histogram (dim=163)  using sigmoid-
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SVM (ρ=4, C=100); 1D-HSV histogram (dim=16*3) using kNN classifier (k=3), 5-fold cross 
validation error for cancer vs. non-cancer classification problem.  b) Overall classification 

performance corresponding to the ROC curves represented in (a). 
 

Figure 3.6(a) showed that the proposed SVM classifiers, in comparison with kNN, return 

slightly better classification accuracy by using the original one- and three-dimensional RGB 

histograms. This might be explained by the high generalization performance of SVM 

classifier even with the large dimension of feature vector. On the other hand, HSV system 

provided almost the same discrimination ability for both SVM and kNN classifiers. However 

kNN is preferred as it is easier to implement and is less computationally expensive. The 

precise classification error rates versus the number of ROC data points for the examined 

classifiers are shown in Figure 3.6(b).  The error rates were calculated as follows: 

 

                                                                                (  ) 

 

where   ̂  
 ̂ 

  
  as defined in eq. 22 is the error rate in which    denotes the number of 

misclassified unknown samples (FPr+FNr) and Ni denotes the number of test 

samples.    and    are FP (false positive) and TP (true positive) rates, respectively. In order 

to produce different error rates, we weighted the error rate    by multiplying in e.g. ρ1=c 

and ρ2=1-c where c is a constant value. The maximum classification rate of 78 percent (as 

suggested in Figure 3.6(b)) was achieved with kNN classifier in HSV system. 
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4. Conclusion & Future Work 

4.1. Conclusion 
 

 Generally, Better diagnostic performance obtained when using histogram-

based features than RGB/HSV color systems as discriminative features to 

the classifiers.  

 
 The overall diagnostic performance of 84% obtained with the proposed 

classification method in this work might be compared with the human 

visual classification rate of 74% [Jullien, 1995]. So the proposed system 

can be considered as a supportive tool to be used with general 

physicians/dentists in distinguishing the pre-cancerous oral conditions 

(OSF/OLP) against the healthy tissues. 

 
 

4.2. Future work 
 

 In this paper, we have investigated two commonly used classifiers; 

Support Vector Machines (SVM) and k-Nearest Neighbors (kNN). 

However, there are many other choices of classifiers worthy of testing. 

Especially as the type of classifier highly influences the classification 

performance, it would be of interest to try some other types such as 

Artificial Neural Networks (ANN) or Bayes Classifiers. 

 

 The extracted features are of great importance and will have the most 

impact on the diagnostic performance regardless of which type of 

classifier has been used. Here, we have investigated the discrimination 

power of two color systems, RGB and HSV, and some histogram-based 

properties of tissue. However, it would be of interest to repeat the same 

experiment with a new set of possibly more potential features. It should 

be mentioned that the discrimination power of features is highly 

dependent on the distribution of data. So, it would be difficult to draw any 
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definite conclusion on which set of features would perform optimally in 

one particular classification problem.  

 

 The segmentation of oral lesions has been manually performed in the 

current work. An automatic segmentation approach, however, can speed 

up the overall procedure. 

 
 In order to provide a better comparison between classifiers, a larger 

volume of samples is required. 
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