
Problem 1a

Consider a snake attempting to segment a circular object as shown below. Associate the correct description (A,B,C,D) of the energy terms of the snake with each of the figures (1,2,3,4).

- A. high-internal energy & low-external energy
- B. high-internal energy & high-external energy
- C. low-internal energy & low-external energy
- D. low-internal energy & high-external energy

Problem 1b

Let $\mathbf{v}_i(t) = (x_i(t), y_i(t))$ be the snake nodes where i = 1, 2, K, N, and $I_s(x, y)$ is a smoothed version of the image. Associate the correct force effect (a,b,c) and force equation (I,II,III) with each of the following forces (1,2,3). (3p)

$\mathbf{F}_{i}^{flexural}$ (t): tensile force	$\mathbf{F}_{i}^{tensile}$ (t): flexural force	$\mathbf{F}_{i}^{external}$ (t): external force
Force 1.	Force 2.	Force 3.

(3p)

- a. Pulls the snake towards edges in the image
- b. Resists stretching in the snake
- c. Resists bending in the snake

I.
$$2\mathbf{v}_{i}(t) - \mathbf{v}_{i-1}(t) - \mathbf{v}_{i+1}(t)$$

II.
$$\tilde{N}$$
 (- $||\tilde{N}I_s(x,y)||$)

III.
$$6\mathbf{v}_{i}(t) - 4\mathbf{v}_{i-1}(t) - 4\mathbf{v}_{i+1}(t) + \mathbf{v}_{i-2}(t) + \mathbf{v}_{i+2}(t)$$

Problem 1c

Describe the main steps of the Canny edge detection algorithm.

Solutions

- 1a) 1-D 2-B 3-A4-C
- 2b) Force 1 b IForce 2 - c - IIIForce 3 - a - II
- 3b) See lecture notes