
LAPLACE OPERATOR 
 
 

The Laplace operator in the spatial domain 

The Laplace operator is defined by: 
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It follows that: 
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Notice that this result is proportional to 
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Hence, the discrete Laplace operator can be replaced by the original function subtracted 
by an average of this function in a small neighborhood: 
 

2f f(i,j) f(i,j)∇ = −         (5) 
 
 

Laplace operator in the frequency domain 
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(Kronecker delta) 
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Laplace operator 
 
 

 
The Laplace operator is defined by: 
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Using the expression above we get: 
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Below you can see the magnitude of the Fourier transform of two different discrete 
approximations of the Laplacian. Notice, both are variant to rotations. 
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One drawback with the Laplacian is that it is sensitive to high-frequency noise. Notice 
the Fourier transform pairs: 
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It can be seen that the effect of the first and second order derivatives on the original 
spectrum is that this will be weighted linearly and quadratic, respectively. 
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LOG filter (Laplacian of Gaussian) 
 
It has been known since Kuffler (1953) that the spatial organization of the receptive fields 
of the retina is circularly symmetric with a central excitatory region and an inhibitory 
surrounding. 

 
 

 
 

 



Lets try to design a version of the Laplacian which is less sensitive to high-frequency 
noise. As a starting point, consider the Gaussian function below: 
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Where  
4

1
πσ

 normalizes the sum of filter 

coefficients to 1, and  σ   controls the width 
of the main lobe. 
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We see that this function can be used as an edge detector with better properties in the 
presence of noise. This is due to its band-pass characteristics. 
 
 
 
 
 



 
 

 
Generally, we have 

g(x,y) f(x,y) h(x,y)= ∗  
Here,  2h(x,y) G(x,y)= ∇  
which gives 2g(x,y) G(x,y) f(x,y)= ∇ ∗  
It can be shown that:  

{ } { }2 2G(x,y) f(x,y) G(x,y) f(x,y)∇ ∗ = ∇ ∗  

 
This is equivalent to LP-filtering by a Gaussian followed by HP-filtering by a Laplacian. 

 


