LAPLACE OPERATOR

The Laplace operator in the gpatial domain

The Laplace operator isdefined by: ~ N%f © — +—
% Ty
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In the discrete case we get N*f(ij) © Df(i,j) +Dif(ij) @)
where  Df(i,j) ° f(i,j)- f(i- 1j)
Df(i,j)) © f(i.j)-f(i.j-D
Dif(i,j) © D,f(i+1j)- Df(i,j)
o [f(i+1j)- f(i.)]- [f(.0)-f(i-1)]
° f(i+Lj)+f(i- 1j)- 2f(i.j)
D;f(i,j) ° f(i,j+1) +f(i,j-1)- 2f(i,))

It follows that:
NZf o [f(i+Lj)+f(i -1 ) +f(i,j+1) +f(i,j- D]- 4f(i.j) ©)

Notice thet this result is proportiond to
f(i.))- }é[f(i +1j)+f(i- L)) +F(0,j) +F(i,j+D+f(i,j- D] 4

Hence, the discrete Lgplace operator can be replaced by the origind function subtracted
by an average of this function in asmall neighborhood:

N2f =f(i.j) - (i.j) ®
L aplace operator in the frequency domain
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(Q F(X)Uy(X - X)dX =f(X")
L aplace oper ator
The Laplace operator is defined by:

Using the expression above we get:
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Below you can see the magnitude of the Fourier transform of two different discrete
approximations of the Laplacian. Notice, both are variant to rotations.
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One drawback with the Laplacian isthat it is sengtive to high-frequency noise. Notice
the Fourier transform pairs.

il (i :
Al Ls X, 2p u F(u,v
%."X( Y)% j 2puF(u,v)

AR (x,y)} - 4p? (U? +Vv?) F(u,v)

It can be seen that the effect of the first and second order derivatives on the origind
spectrum is that thiswill be weighted linearly and quadratic, respectively.
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LOG filter (Laplacian of Gaussan)

It has been known since Kuffler (1953) that the spatiad organization of the receptive fidds
of theretinais circularly symmetric with a central excitatory region and an inhibitory

surrounding.




Letstry to desgn averson of the Laplacian which isless sengtive to high-frequency
noise. As adarting point, congder the Gaussan function below:
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G(x.y) =

2ps

Now compute N°G(X,y) = ﬂﬂTZZ[G(X,Y)] + %—Z[G(X'y)]
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Where L normaizesthe sum of filter
ps

coefficientsto 1, ad S controlsthe width

of the main lobe.

Time domain Fourier domain
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We see that this function can be used as an edge detector with better propertiesin the
presence of noise. Thisis dueto its band-pass characterigtics.



Generdly, we have .
g(x,y) =f(x,y)* h(x.y)

Here, h(x.y) = NPG(x.y)
which gives -

a(x,y) =NG(x,y)*f(x,y)
It can be shown thet:

{REG(xy} *f(xy) = RE{GOY) *1x.y)}

Thisis equivdent to LP-filtering by a Gaussan followed by HP-filtering by a Laplacian.



