Morphological operations

Mathematical morphology and binary operations

The basic operations are: •Erode/Dilate •Open/Close •Hit-Miss

A variety of algorithms can be based on the above basic operations. Here, we give a few examples:

•Skeleton •Distance transforms •Shape features

Mathematical morphology is mainly based on set theory. Intuitively, the whole area is about adding or removing pixels from a binary image according to certain rules depending on neighborhood patterns

Erosion

Let B_X denote the translation of B so that its origin is located at x. Then the erosion of X by B is defined as the set of all points x such that B_X is included in X, that is:

 $X \in B \otimes \{x \mid B_x \subset X\}$

Dilation

Similarly, the dilation of X by B is defined as the set of all points x such that B_X hits X, i.e. they have a non-empty intersection:

 $\mathbf{X} \oplus \mathbf{B} @ \{\mathbf{x} | \mathbf{B}_{\mathbf{x}} \cap \mathbf{X} \neq \emptyset\}$

Open is defined as an erosion followed by a dilation:

 $X_{B} = (X e B) \oplus B$

Examples of the open operation

Close

Close is defined by a dilation followed by an erosion : $X^{B} = (X \oplus B) e B$ Example of a close operation

Hit-Miss

The hit-miss operation means searching for a match or a specific configuration:

 B_{ob} and B_{bk} are the sets formed from pixels in B that should belong to the object and the background, respectively:

 $\mathbf{X} \otimes \mathbf{B} = (\mathbf{X} \mathbf{e} \mathbf{B}_{ob}) / (\mathbf{X} \oplus \mathbf{B}_{bk})$

where / means set difference

Skeletonization

Definition:	The set of points whose distance from the nearest boundary is locally maximum
Shape recovery:	Take the union of circular discs centered on the
	skeleton and having radii equal to the associated contour distance
Application:	Compact shape representation. Works best for long and thin features
Alternative:	Medial axis transform. Those points being equidistant from at least two boundary points (Prairie fire)

Skeleton examples

Skeletonization algorithm

Phase1:West	0	0 1 1	1 1	(0	1 1 0	1 1		0	1	1 1 1	0	0 1 0	1
Phase2:North	1	0 1 1	0		C	0 1 1	1	1	1	0 1 1	1	0	0 1 1	0
Phase3:East	1 1	1 1 0	0	-	1	0 1 1	0		1 1 1	1	0	1	0 1 0	0
Phase4:South	0	1 1 0	1 1		1	1 1 0	0		1	1 1 0	1	0	1 1 0	0

The algorithm runs in four phases: west-north-east-south. Each of the four phases is associated with a set of hit-miss operators.

If the number of operators in the set is 3 (the three leftmost) the object will shrink to a skeleton. If the number is 4, it will shrink to a point.

The algorithm is as follows:

1. Run phase 1 (west). For each pixel position in the input image, test the west hit-miss operators for a hit.

2. If any of the operators results in a hit, set the corresponding position in the output image to zero. Otherwise, set to one.

3. Proceed in the same manner with phase 2, 3 and 4. If there still remain pixel positions that can be set to zero by a hit, go to 1.

4. The skeleton (or point) is extracted

Distance metrics

- a) Euclidian $d_e(x,y) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$
- b) City block $d_{cb}(x,y) = |x_1 x_2| + |y_1 y_2|$

c) Chessboard $d_{ch}(x,y) = \max \{ |x_1 - x_2|, |y_1 - y_2| \}$

Below you will see the distances from a point using the above metrics.

		3	3	3						3				3	3	3	3	3	3	3
	3	2	2	2	3				3	2	3			3	2	2	2	2	2	3
3	2	1	1	1	2	3		3	2	1	2	3		3	2	1	1	1	2	3
3	2	1	0	1	2	3	3	2	1	0	1	2	3	3	2	1	0	1	2	3
3	2	1	1	1	2	3		3	2	1	2	3		3	2	1	1	1	2	3
	3	2	2	2	3				3	2	3			3	2	2	2	2	2	3
		3	3	3						3				3	3	3	3	3	3	3
			a)							b)							c)			

Distance transform

The distance transform uses a binary image as input and produces for each pixel position a value that is the distance from that pixel to the nearest background pixel. Examples of application areas are:

- Fast morphological operations
- Skeletonization
- Computation of shape features (e.g. form factor)

Distance transform algorithm using chessboard metrics algorithm

Phase 1: apply this filter from the upper left corner of the image: If A>0: A=min(B+1, C+1) C B A

В

Phase 2: apply this filter from the lower right corner of the image: If A>0: A=min(A,B+1, C+1)

Distance map result

1	1	1	1	1	1		
1	2	2	1	2	2		
1	2	3					
1	2	3	1	1	1	1	1
1	2	3	1	2	2	2	2
			1	2	3	3	3
	1	1	1	2	3	4	4
1	2		1	2	3	4	5

1	1	1	1	1	1		
1	2	1	1	1	1		
1	2	1					
1	2	1	1	1	1	1	1
1	1	1	1	2	2	2	1
			1	2	3	2	1
	1	1	1	2	2	2	1
1	1		1	1	1	1	1

Phase 1

Phase 2

Shape features

Shape factor:
$$S = \frac{p^2}{4\mathbf{p}A}$$

 $A = Area$

p = perimeterS = 1 for a circle

Great Britain Area can be determined, what about perimeter?

Higher resolution: Perimeter $\rightarrow \infty$

Shape features

$$\overline{d} = \frac{1}{A} \iint_{A} d(x, y) dA \text{ (for a circle, } \overline{d} = \frac{r}{3})$$

$$FORM = \frac{1}{9p} \cdot \frac{A}{\overline{d}^{2}} \text{ (for a circle, } FORM = 1)$$

$$\overline{d} = \frac{\sum_{A} \left[d(x, y) - \frac{1}{2} \right]}{A} = \frac{\sum_{A} d(x, y)}{A} - \frac{1}{2}$$

where A is the number of pixels in the object

$$\overline{d} = \frac{30 \cdot 1 + 31 \cdot 2 + 12 \cdot 3 + 4 \cdot 4}{77} - 0.5 \approx 1.37$$

FORM $\approx \frac{1}{9p} \cdot \frac{77}{(1.37)^2} \approx 1.45$