Exercise 1 (Hough transform)

the histogram (hit/hough/accumulation) matrix is constructed:

For each point on a strong edge we find the lines that it may belong to: For the point P1(2,2) and q:

0:	$r = 2*\cos(0) + 2*\sin(0) = 2$	\Longrightarrow line [2.0]
π/4:	$r = 2^{\circ}\cos(\pi/4) + 2^{\circ}\sin(\pi/4) = 2.8284 - 3$	\implies line [3, $\pi/4$]
π/2:	$r = 2 \cos(\pi/2) + 2 \sin(\pi/2) = 2$	\implies line [2, $\pi/2$]
3π/4:	$r = 2 \cos((3\pi/4)) + 2 \sin((3\pi/4)) = 0$	\implies line [0,3 $\pi/4$]

So the histogram matrix is updated as follows:

	-3	-2	-1	0	1	2	3
0						/	
π/4							/
π/2						/	
$3\pi/4$				/			

Finding the possible lines and updating the histogram matrix for the remaining 5 points:

	-3	-2	-1	0	1	2	3
0		//			/	////	
$\pi/4$	/			///	/	/	/
$\pi/2$		//	//		/	//	
3π/4	/	/	//	//			/

Identifying the two lines with the maximum number of hits:

Line 1: $[r_1, q_1] = [2,0]$, Line 2: $[r_2, q_2] = [0, \pi/4]$

Examining the detected lines on the image with the strong edge points, we obtain agreeable results:

Exercise 2 (Moments)

$$m_{i,j} = \sum_{x} \sum_{y} x^{i} y f(x, y)$$

$$m_{1,0} = 3 \cdot 3 + 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 + 4 \cdot 1 + 5 \cdot 1 + 2 \cdot 3 + 1 \cdot 4 + 1 \cdot 5 \cdot 1 + 1 \cdot 2 \cdot 3 + 1 \cdot 4 + 2 \cdot 3 = 45$$

Image 2: $m_{1,0} = 90$

c) Central moments, invariant by translation:

$$\mu_{i,j} = \sum_{x} \sum_{y} (x - \overline{x})^{i} (y - \overline{y})^{i} f(x, y)$$

where $\overline{x} = \frac{m_{1,0}}{m_{0,0}}$ and $\overline{y} = \frac{m_{0,1}}{m_{0,0}}$

Image 1:
$$\mu_{2,0} = 12$$

Image 2: $\mu_{2,0} = 12$

Exercise 3 (Moments & GLCM)

$$\mu_{1,0} = \sum_{x} \sum_{y} (x - \overline{x})^{l} (y - \overline{y})^{0} f(x,y)$$

$$= \sum_{x} \sum_{y} (x - \overline{x}) f(x,y)$$

$$= \sum_{x} \sum_{y} x f(x,y) - \sum_{x} \sum_{y} \overline{x} f(x,y)$$

$$= m_{1,0} - \frac{\overline{x}}{m_{1,0}} \sum_{x} \sum_{y} f(x,y)$$

$$= m_{1,0} - \frac{m_{1,0}}{m_{0,0}} m_{0,0} = 0$$

Exercise 4 (Moments &GLCM)

a)

$$\mu_{i,j} = \sum_{x} \sum_{y} (x - \overline{x})^{i} (y - \overline{y})^{j} f(x, y)$$

where $\overline{x} = \frac{m_{1,0}}{m_{0,0}}$ and $\overline{y} = \frac{m_{0,1}}{m_{0,0}}$

b) They are invariant to translation

c)

$$\begin{array}{l} m_{0,0} = 1 + 2 = 3 \\ m_{1,0} = 2 \cdot 1 + 3 \cdot 2 = 8 \\ m_{0,1} = 1 \cdot 1 + 2 \cdot 2 = 5 \end{array} \end{array} \xrightarrow{\begin{subarray}{l} \hline x = \frac{8}{3} \\ \Rightarrow & \hline y = \frac{5}{3} \\ \mu_{2,2} = (2 - \frac{8}{3})^2 (1 - \frac{5}{3})^2 \cdot 1 + (3 - \frac{8}{3})^2 (2 - \frac{5}{3})^2 \cdot 2 = 18/81 \\ \end{array}$$

d)

$$m_{0,0} = 1 + 2 = 3
m_{1,0} = 2 \cdot 1 + (2 + \sqrt{2}) \cdot 2 = 6 + 2\sqrt{2}
m_{0,1} = 1 \cdot 1 + 1 \cdot 2 = 3$$

$$\Rightarrow \quad \overline{x} = \frac{6 + 2\sqrt{2}}{3}
\overline{y} = 1
\mu_{2,2} = (2 - \frac{6 + 2\sqrt{2}}{3})^2 (1 - 1)^2 \cdot 1 + (2 + \sqrt{2} - \frac{6 + 2\sqrt{2}}{3})^2 (1 - 1)^2 \cdot 2 = 0$$

e) The central moments $\mu_{p,q}$ are always invariant under translation whereas they are not invariant under rotation

Exercise 5 (Moments & GLMC)

a)

$$\mu_{i,j} = \sum_{x} \sum_{y} (x - \overline{x})^{i} (y - \overline{y})^{j} f(x, y)$$

where $\overline{x} = \frac{m_{1,0}}{m_{0,0}}$ and $\overline{y} = \frac{m_{0,1}}{m_{0,0}}$

$$\overline{x} = 2 \text{ and } \overline{y} = 1 \mu_{2,0} = 4 \mu_{0,2} = 2$$

$$\mu_{2,0} + \mu_{0,2} = 6$$

b) It is invariant under rotation

c) \bar{x} and \bar{y} will not be affected by the noise term

$$\begin{array}{l} \mu_{2,0} = 4 + 2\epsilon \\ \mu_{0,2} = 2 + 2\epsilon \end{array} \hspace{0.2cm} \mu_{2,0} + \mu_{0,2} = 6 + 4\epsilon \\ 4\epsilon < 0.5 \Longrightarrow \epsilon < 0.5/4 = 0.125 \end{array}$$

d) The magnitude of the first harmonic should be zero

e) $2 \cdot (2+3+1) + 4 \cdot 2 \cdot 1 = 28$

 ${\bf f}{\bf)}$ It is associated with low frequencies because most of the values are along the main diagonal

Exercise 6 (GLCM)

a)

	4	2		1	()				4	1	0	0
<u>∩.</u>	2	4		0	()			π /4	. 1	2	2	0
0.	1	0		6]	l			л/4	0	2	4	1
	0	0		1	2	2				0	0	1	0
		6	0		2	0				2	1	3	0
		0	1		2 2	0				1	י ר	1	0
π	2:	0	4		2	0			$3\pi/$	4:	1	1	0
		2	2		2	2				3	I	0	2
		0	0		2	0				0	0	2	0

b) Texture analysis

c) horizontal direction: values are spread out vertical direction: values are concentrated on the diagonal

d) Contrast
$$\sum_{i,j} (i-j)^2 p(i,j)$$

e)
 $\int_0^{2\pi} \int_0^{r'} F(r,\phi) dr d\phi$

This feature measures the energy in the low-frequency range of the Fourier spectrum

Exercise 7 (Region representation)

Let ε denote the error between data f(x,y) and model g(x,y). By the least square solution, we would like to minimize the squared error:

$$\varepsilon^{2} = \sum [f(x,y) - g(x,y)]^{2} = \sum [f(x,y) - a_{0} - a_{1}x - a_{2}y]^{2}$$

We determine the parameters a₀, a₁ and a₂ by solving the following equations:

$$\frac{\partial \varepsilon^2}{\partial a_0} = 0 \quad \frac{\partial \varepsilon^2}{\partial a_1} = 0 \quad \frac{\partial \varepsilon^2}{\partial a_2} = 0$$

$$\frac{\partial \varepsilon^2}{\partial a_0} = 2 \cdot \sum \left[f(x,y) - a_0 - a_1 x - a_2 y \right]$$

= $2 \cdot \sum f(x,y) - 2 \sum_{Na_0} a_0 - 2a_1 \sum_0 x - 2a_2 \sum_0 y$
 $a0 = \frac{1}{N} \sum f(x,y) \text{ (mean intensity)}$

(N is the number of pixels)

$$\frac{\partial \varepsilon^2}{\partial a_1} = 2 \cdot \sum \left[x f(x,y) - a_0 x - a_1 x^2 - a_2 x y \right]$$

= $2 \cdot \sum x f(x,y) - 2a_1 \sum x^2 - 2a_0 \sum_0 x - 2a_2 \sum_0 x y$
 $a_1 = \frac{\sum x f(x,y)}{\sum x^2}$ and similarly $a_2 = \frac{\sum y f(x,y)}{\sum y^2}$

Notice that a_1 and a_2 can be looked upon as f_X ' and f_Y ', respectively, in the image region:

The slope of the plane then equals the gradient magnitude:

$$|G_{f}| = \sqrt{f_{x}^{'^{2}} + f_{y}^{'^{2}}}$$

The orientation equals the gradient orientation:

$$\theta = \arctan\left(f_{y}' / f_{x}'\right) = \left[G_{f}\right]$$

Numerically, we obtain $f_{X}{\ }$ and $f_{Y}{\ }$ by convolving the image region with the operators above:

$$f'_{x} = (-17 - 15 - 10 + 40 + 30 + 26)/26 = 54/6$$

$$f'_{y} = (-10 - 16 - 26 + 17 + 23 + 40)/6 = 28/6$$

$$|G_{f}|; 9.3 \text{ (grayscale units per length unit)}$$

$$\theta; 30^{\circ}$$

Exercise 8

$$r(a,b) = \frac{L_x L_y}{(L_x - |a|)(L_y - |b|)} \frac{\sum_{x} \sum_{y} f(x,y) f(x - a, y - b)}{\sum_{x} \sum_{y} f^2(x,y)}$$

$$r(1,0) = (1 \cdot 2 + 1 \cdot 2 + 1 \cdot 3 + 1 \cdot 3) \frac{16}{12 \cdot 56} \approx 0.24$$

$$r(2,0) = (3 \cdot 2 + 3 \cdot 2 + 2 \cdot 3 + 2 \cdot 3) \frac{16}{8 \cdot 56} \approx 0.86$$

$$r(3,0) = (3 + 3 + 2 + 2) \frac{16}{4 \cdot 56} \approx 0.71$$

$$r(0,1) = (1 + 9 + 4 + 1 + 6 + 6 + 1 + 4 + 9) \frac{16}{4 \cdot 56} \approx 0.98$$

a)

$$r(2,0) = (3 \cdot 2 + 3 \cdot 2 + 2 \cdot 3 + 2 \cdot 3) \frac{8 \cdot 56}{8 \cdot 56} \approx 0.80$$

$$r(3,0) = (3+3+2+2) \frac{16}{4 \cdot 56} \approx 0.71$$

$$r(0,1) = (1+9+4+1+6+6+1+4+9) \frac{16}{12 \cdot 56} \approx 0$$

$$r(0,2) = (1+6+6+1+6+6) \frac{16}{8 \cdot 56} \approx 0.93$$

$$r(0,3) = (1+6+6) \frac{16}{4 \cdot 56} \approx 0.93$$

b) The autocorrelation function drops off more quickly in the horizontal direction which means we have higher frequencies

c)	ł	Iorizo	ntal			Vert	ical			
	0	1	2	3		0	1	2	3	
0	0	0	4	4	0	6	0	0	0	
1	0	0	2	2	1	0	6	0	0	
2	4	2	0	0	2	0	0	4	2	
3	4	2	0	0	3	0	0	2	4	

d) The CLCM computed for the horizontal direction has a lot of values outside the diagonal: high frequencies in the horizontal direction. Vice-versa for GLCM computed for the vertical direction.

e) Contrast:

Horizontal direction:
$$\sum_{i} \sum_{j} (i - j)^2 p(i, j) = (2^2 g_1 + 3^2 g_1 + 1^2 g_2 + 2^2 g_2) g_2$$
$$= (4g_1 + 9g_1 + 1g_2 + 4g_2) g_2$$
$$= (16 + 36 + 2 + 8) g_2$$
$$= 124$$

Vertical direction:

 $\sum_{i} \sum_{j} (i - j)^2 p(i, j) = 1^2 \mathfrak{P} + 1^2 \mathfrak{P} = 4$

Exercise 9 (GLCM)

a)

 $p_u(x)$ @Prob[u = x] $\approx \frac{\text{number of pixels with graylevel x}}{\text{total number of pixels in the region}}$

b) n₁(5)=3/8

$$p_u(3)=3$$

c)

$$p_{u_1, u_2}(x_1, x_2) @Prob[u_1 = x_1, u_2 = x_2] \approx$$

number of pair of pixels $u_1 = x_1$, $u_2 = x_2$ total number of such pairs of pixels in the region

d)

p_{u1,u2}(5,6)=1/9 (there are 9 such pixel pairs out of which only one with $u_1=5$ and $u_2=6$)

e)

		1	1	1	0
Second order joint probabilities:	1	0	2	1	0
Second order joint probabilities.	<u>9</u> .	1	1	0	0
		0	1	0	0

Contrast =
$$\sum_{X_1} \sum_{X_2} (X_1 - X_2)^2 p_{u_1, u_2}(X_1, X_2)$$

= $3 \cdot 1^2 \cdot 1 + 3 \cdot 2^2 \cdot 1 = 15$
or $\frac{15}{9}$ if the matrix is normalized

f) Autocorrelation and features from the Fourier domain

Exercise 10 (GLCM)

			0	1	2	3		0	1	2	3
		0	4	1	0	0	0	0	1	1	3
a)	GLCM for dist=1:	1	1	6	0	0	1	1	0	2	2
		2	0	0	2	3	2	1	2	0	3
		3	0	0	3	2	3	3	2	3	0

The appropriate feature should be contrast $\sum_i{(i-j)^2p(i,j)}$

Image 1: $2 \cdot (1^2 \cdot 1) + 2 \cdot (1^2 \cdot 3) = 8$ Image 2: $2 \cdot (1^2 \cdot 1) + 2 \cdot (2^2 \cdot 1) + 2 \cdot (3^2 \cdot 3) + 2 \cdot (1^2 \cdot 2) + 2 \cdot (2^2 \cdot 2) + 2 \cdot (1^2 \cdot 3) = 90$

b) A suitable feature is:
$$\int_{r_1}^{r_2} \int_{\varphi_1}^{\varphi_2} F(r, \varphi) dr d\varphi$$
 i.e. we compute the energy in a segment of the spectrum

spectrum

c) No, the autocorrelation function does not cover spectral magnitude and phase simultaneously

d) Sum up the values along diagonals parallel to the main diagonal

Ø	0	0	1
2	Ľ	2	2
1	1	X	1
3	3	3	ષ્ટ્ર

e) Contrast:

Horizontal direction:

$$\sum_{i} \sum_{j} (i-j)^{2} p(i,j) = (2^{2} \cdot 4 + 3^{2} \cdot 4 + 1^{2} \cdot 2 + 2^{2} \cdot 2) \cdot 2$$

$$= (4 \cdot 4 + 9 \cdot 4 + 1 \cdot 2 + 4 \cdot 2) \cdot 2$$

$$= (16 + 36 + 2 + 8) \cdot 2$$

$$= 124$$

Vertical direction:

$$\sum_{i} \sum_{j} (i-j)^2 p(i,j) = 1^2 \cdot 2 + 1^2 \cdot 2 = 4$$

Exercise 11

saknas

Exercise 12

	0	-4	0	-2	-1	6	2	2	4	4		-6	2	-2	-2	-
	2	-1	-3	1	-3	6	6	2	6	5		-8	-5	1	-7	-
	2	3	0	2	2	4	7	5	5	8		-6	-10	-5	-7	-
	0	0	3	-1	4	2	4	5	3	6		-2	-4	-8	-2	-
ach p mple)	oint		grad					int					27.2	-grad-	-int	
	-6	-5	-15	-20	-30						[27.13		
	-6 -8	-5 -13	-15 -15	-20 -28	-30 -31		- /	t	(x				
	-6 -8 -6	-5 -13 -17	-15 -15 -22	-20 -28 -30	-30 -31 - 40			, ,				x	x		x	x
-4 -5 0 9	-6 -8 -6 -2	-5 -13 -17 -9	-15 -15 -22 -24	-20 -28 -30 -26	-30 -31 40 -39							x	x	x	x	

Exercise 13 (Moments)

$$\mu_{i,j} = \sum_{x} \sum_{y} (x - \overline{x})^{i} (y - \overline{y})^{j} f(x, y)$$
where $\overline{x} = \frac{m_{1,0}}{m_{0,0}}$ and $\overline{y} = \frac{m_{0,1}}{m_{0,0}}$

$$\mu_{2,0} = \sum_{x} \sum_{y} (x - \overline{x})^{2} f(x, y)$$

$$\overline{x} = \frac{2 + 3a}{1 + a}$$

$$\mu_{2,0} = \left(2 - \frac{2 + 3a}{1 + a}\right)^{2} + \left(3 - \frac{2 + 3a}{1 + a}\right)^{2} \cdot a = \frac{2}{3}$$

$$3 \frac{(2 + 2a - 2 - 3a)^{2}}{(1 + a)^{2}} + 3 \frac{a \cdot (3 + 3a - 2 - 3a)^{2}}{(1 + a)^{2}} = 2$$

$$(a \neq -1) \Rightarrow 3a^{2} + 3a = 2(1 + a)^{2} \Rightarrow a^{2} - a + 2 = 0 \Rightarrow a = 2$$