a) 1 2 1 2 4 2 = $f_3 = f_1 * f_2$ 1 2 1 b) $\Im[f_3(x,y)] = 4 + 4\cos(u) + 4\cos(v) + 2\cos(u+v) + 2\cos(u-v)$ c) $\Im[f_1(x,y)] = 2 + 2\cos(u)$ $\Im[f_2(x,y)] = 2 + 2\cos(u)$ $\Im[f_2(x,y)] = 2 + 2\cos(u)$ $\Im[f_3(x,y)] = \Im[f_1(x,y)] \cdot \Im[f_2(x,y)]$ $= (2 + 2\cos(v)) \cdot (2 + 2\cos(u))$ $= 4 + 4\cos(u) + 4\cos(v) + 4\cos(u)\cos(v)$ $= 4 + 4\cos(u) + 4\cos(v) + 2\cos(u+v) + 2\cos(u-v)$

d)

The Fourier transform of the median filter does not exist. This is because it is a non-linear filter.

a)

Refer to the page 'The Laplace-operator in the frequency domain' where the general solution is derived from a nxn filter of any type (LP, HP, BP).

d)

The median may be superior to the mean if the image has been subject to salt & pepper noise.

a) h2 0 1 0 1 4 1 0 1 0 **b**) f/2 d/2 b/2 c/2e/2 a/2 g a/2 e/2 c/2 b/2 d/2. b/2 f/2 0 2 0 2 5 3 0 5 0

b)

 $\begin{array}{r} 24 \\ +\ 28\ cos(u) + 28\ cos(v) \\ +\ 4\ cos(2u) + 4\ cos(2v) \\ +\ 16\ cos(u+v) + 16\ cos(u-v) \\ +\ 2\ cos(2u+v) + 2\ cos(2u-v) \\ +\ 2\ cos(u+2v) + 2\ cos(u-2v) \end{array}$

a)	
Vertical 2:	-2
Horizontal 2:	-2
Diagonal 2:	-4
Single 2:	-8

b)

The operator is obviously not rotation-invariant.

c)

$$\Im(u,v)[h(x,y)] = -4 + 2(\cos(u) + \cos(v))$$

d) $\Im[h(x,y)]_{(u=\pi,v=0)} = 2(-2+\cos\pi+\cos\theta) = -4$ $\Im[h(x,y)]_{(u=\pi,v=0)} = 2(-2+\cos\pi+\cos\pi) = -8$

e) Again, it can be seen that the operator is not rotational invariant.

a)

h5, which is a low-pass filter, can be used to eliminate the noise.

h2, which is a high-pass filter (Laplacian-type), can be used to create the gradient image.

b)

If we denote f the input image, and g the output image, we can write:

 $g = (f * h_1) * h_2 = f * (h_1 * h_2) = f * h_{new}$

c) 1 0 2 1 0 -12 0 1 2 0

1

d)

The new filter has a band-pass type.

2

2

e)

An FFT for an image of NxN pixels requires 2N²log₂N real multiplications.

In total (FFT multiplication with complex numbers => inverse FFT), we need:

 $2N^2log_2N+4N^2+2N^2log_2N=4N^2(1+log_2N)$ operations. Convolution, or filtering in the

spatial domain (n coeff <>0), takes N²n multiplications.

Therefore, filtering in the spatial domain is computationally more efficient for cases where n< 4(1+log₂N), for example n<40 for N=512 means a maximal sized operator of 6 x 6 can be used.

a) $F(u,v)=(2 + \cos(u) + \cos(v))/4$

b)

d)

The median filter can remove 'spikes', or salt-and-pepper noise, but also removes corners of an object.

a)
Denote the output image by g(i,j), then:

$$g(i,j) = -4f(i,j) + f(i+1,j) + f(i-1,j) + f(i,j) + f(i,j+1) + f(i,j-1)$$

 $g(i,j) = -5\left[f(i,j) - \frac{1}{5}\left[f(i+1,j) + f(i-1,j) + f(i,j) + f(i,j+1) + f(i,j-1)\right]\right]$
 $g(i,j) = -5\left[f(i,j) - \overline{f}(i,j)\right]$

b)

$$g(x) = 1 \quad \text{if} \quad f(x) \ge \overline{f}(x) + T$$

Equivalent to
$$\underbrace{f(x) - \overline{f}(x)}_{\text{Laplace}} \ge +T$$

c) Assume that g_k is degraded by the effect of unfocused section at levels k+1 and k-1 so that $g_k = f_k + \epsilon(\overline{f}_{k+1} + \overline{f}_{k-1})$

Then, a reasonable estimation of $\mathbf{f}_{\!K}$ would be:

$$\hat{\mathbf{f}}_{k} = \mathbf{g}_{k} - \mathbf{\epsilon}(\overline{\mathbf{g}}_{k+1} + \overline{\mathbf{g}}_{k-1})$$

a)

Let f be the input image, g1 the output after the first convolution, and g2 the output after the second convolution. Then,

$$g_{1}(x,y) = f(x,y)*h_{1}(x,y)$$

$$g_{2}(x,y) = g_{1}(x,y)*h_{2}(x,y)$$

$$= \{f(x,y)*h_{1}(x,y)\}*h_{2}(x,y)$$

$$= f(x,y)*\{h_{1}(x,y)*h_{2}(x,y)\}$$

$$= f(x,y)*h_{3}(x,y)$$

b)

		1		
	2	8	2	
1	8	20	8	1
	2	8	2	
		1		

c) The filter should be normalized so that the image is not 'amplified' (the intensity is not increased globally). The normalization factor k will be equal to the sum of all filter coefficients. In the present case, k=8

		0	1	0	
d)	For example,	0	2	0	
		0	1	0	

as this filter removes noise along the vertical edges without blurring across