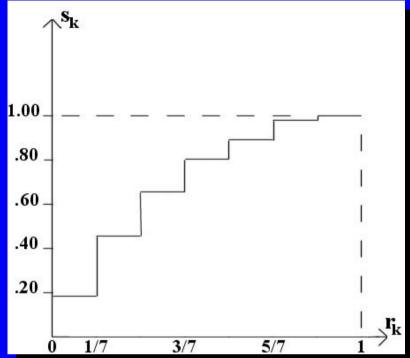
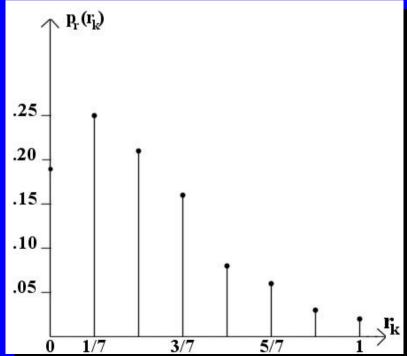

HISTOGRAM


Numerical exercise



$$\begin{split} s &= T(r) &= \int_0^r p_r(w) dw \quad 0 \le r \le 1 \\ s_k &= T(r_k) &= \sum_{j=0}^k \frac{n_j}{n} \\ &= \sum_{j=0}^k p_r(r_j) &0 \le r \le 1 \\ &= k \ge 0, 1..., L-1 \end{split}$$

$$r_k$$
 $r_0 = 0$ 790 0.19
 $r_1 = 1/7$ 1023 0.25
 $r_2 = 2/7$ 850 0.21
 $r_3 = 3/7$ 656 0.16
 $r_4 = 4/7$ 329 0.08
 $r_5 = 5/7$ 245 0.06
 $r_6 = 6/7$ 122 0.03
 $r_7 = 1$ 81 0.02

$$s_0 = T(r_0) = \sum_{j=0}^{0} p_r(r_j)$$

= $p_r(r_0)$
= 0.19

similarly,

$$s_1 = T(r_1) = \sum_{j=0}^{1} p_r(r_j)$$
$$= p_r(r_0) + p_r(r_1)$$
$$= 0.44$$

and:
$$s_2 = 0.65$$
 $s_5 = 0.95$
 $s_3 = 0.81$ $s_6 = 0.98$
 $s_4 = 0.89$ $s_7 = 1$

The tranformation function has the staircase form shown in the previous page. Since only eight equally-spaced levels are allowed in this case, each of the transformed value must be assigned to its closest valid level.

Thus we have:
$$s_0 \cong 1/7$$
 $s_4 \cong 6/7$ $s_1 \cong 3/7$ $s_5 \cong 1$ $s_2 \cong 5/7$ $s_6 \cong 1$ $s_3 \cong 6/7$ $s_7 \cong 1$