Exam Question

After performing edge detection on a 4x4 image suspected to contain a number of straight edges or lines, 7 pixels were found to lie on sufficiently strong edges, their coordinates are: (2,2),(2,1),(2,-1),(2,-2),(1,-1),(-2,2), and (-2,-2)

The equation used to describe a line is: $x\cos(q) + y\sin(q) = r$ where x,y are the coordinates of a point on the line and the parameters r and q are defined as in the figure:

You are required to detect the two strongest lines in the image using the Hough Transform ([r_1, q_1] and [r_2, q_2]).

Note: Use the following quantized values for r and q, respectively. [-3 -2 -1 0 1 2 3] and [0 p/4 p/2 3p/4].

Solution

the histogram (hit/hough/accumulation) matrix is constructed:

	-3	-2	-1	0	1	2	3
0							
p /4							
p /2							
3 p /4							

For each point on a strong edge we find the lines that it may belong to:

```
For the point p1(2,2) and q:

0: r=2*\cos(0)+2*\sin(0)=2 ==> line [2,0]

pi/4: r=2*\cos(p/4)+2*\sin(p/4)=2.8284\sim3 ==> line [3,p/4]

pi/2: r=2*\cos(p/2)+2*\sin(p/2)=2 ==> line [2,p/2]

3pi/4:r=2*\cos(3p/4)+2*\sin(3p/4)=0 ==> line [0,3p/4]
```

0					11	
p /4					/	/
p /2				/	/	
3 p /4		/	/			

Finding the possible lines and updating the histogram matrix for the remaining 5 points, we obtain:

	-3	-2	-1	0	1	2	3
0		11			/	////	
$\mathbf{p}/4$	/			///	/	/	/
p /2		11	//		/	//	
3 p /4	/	/	//	11			/

Identifying the two lines with the maximum number of hits: Line 1: $[r_1, q_1] = [2, 0]$

Line 2: $[r_2, q_2] = [0, p/4]$

Examining the detected lines on the image with the strong edge points, we obtain agreeable results:

