Given the 4x5 pixels image below,

3	1	1	2	2	
3	5	1	4	3	
1	2	4	1	5	
1	2	1	2	1	

Use dynamic programming to derive the optimum continuous line P with the following criteria:

- -P is a raw vector composed of 5 pixels
- -P minimizes the function below:

$$f(P) = -\sum_{x=1}^{5} (C_{grad}(p_x) + C_{int}(p_x)) + \sum_{x=2}^{5} C_{cont}(p_x, p_{x-1})$$

$$(p_1, ..., p_5 \in P)$$

where:

C_{grad} is computed using operator

C_{int} is computed using operator

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

0 −1

 C_{cont} is computed using $(\Delta y)^2$, where Δy is the difference of y coordinates of two adjacent pixels on the line

Tip: for the computation of C_{grad} and C_{int} , at border pixels, add extra rows [3 1 1 2 2] and [1 2 1 2 1] on top and bottom of the image, respectively