Automated Ultrasonic Measurement of Human Arteries

Tomas Gustavsson

Ultrasound carotid artery examination

Ultrasound artery analyzing

 $T=T_1 \qquad T=T_2 \qquad T=T_3 \qquad T=T_4$ $P_T E_1 \qquad P_T E_1 E_2 \qquad P_T E_1 E_2 \qquad P_T E_1 E_2$

Theoretical maximum of resolution

The wavelength of the ultrasonic pulse is given by: $\lambda = c/f$

Where c is the speed of sound in biological tissue and f is the transducer frequency. The pulse length is approximatively:

$$lp = n \times \lambda$$

where n is the number of cycles that are used to produce the ultrasonic pulse.

7

Theoretical maximum of resolution

The minimum thickness of a resoluble structure is: d = lp/2

Combining these equations yields:

$$d = \frac{n \times c}{2 \times f}$$

In a typical case with n=3, $c=1.5x10^3 m.s^{-1}$ and f=7Mhz, say, one finds that: d=0.3 mm

Example of detection result — Common carotid artery

Example of detection result — Carotid artery bulb

Example of detection result — Common femoral artery

Evaluation in clinical application environment

(The evaluation result has been published in Stroke, Vol.28 1997 Nov.)

- Subjects: New, n = 50.
- Images: 9 images from each subject.

(3 CCA, 3 Bulb, 3 CFA)

- Operators: Three operators with different experiences, Independent evaluation.
- Method: Manual vs. Automated.

Table 1. Comparison between manual and automated analysing systems

	Manual system	Automated system	Difference between systems	CV	Correlation (r)	
	Mean±SD (mm)	Mean±SD (mm)	(mm)	(%)		
Common car	otid artery (n	=50)				
IM T _{mean}	0.88±0.25	0.92 ± 0.25	0.042***	2.0	1.00	
IM T _{max}	1.05 ± 0.32	1.12 ± 0.32	0.078***	4.1	0.98	
LD _{mean}	6.18±0.73	6.24 ± 0.75	0.063***	1.6	0.98	
Carotid arter	y bulb (n=45)					
IM T _{mean}	1.03 ± 0.34	1.04 ± 0.31	0.019*	4.7	0.98	
IM T _{max}	1.39 ± 0.51	1.48 ± 0.53	0.088***	4.9	0.98	
Common fem	i <mark>oral artery</mark> (n	=45)				
IM T _{mean}	1.25 ± 0.65	1.25 ± 0.64	-0.003	4.3	0.99	
IM T _{max}	1.65 ± 0.90	1.69 ± 0.90	0.042*	5.4	0.99	
LD _{mean} (n=	38)8.22±1.39	8.34±1.43	0.116***	1.3	0.99	

SD : standard deviation.

* $p_1 < 0.05$, *** $p_2 < 0.001$ for differences between analyzing systems.

Table 2. Reading variability when measurements were performed with the manual analysis system and with the automated analyzing system, respectively.

	Manual system				Automated system							
	Reader 1 Mean±SD (mm)	Reader 2 <i>Mean±SD</i> (mm)	Difference btw. reade (mm)	<i>CV</i> rs (%)	Reader 1 Mean±SD (mm)	Reader 2 <i>Mean±SD</i> (mm)	Difference btw. reade (mm)	e <i>CV</i> ers (%)				
Common carotid artery (n=50)												
IM T _{mean}	0.88 ± 0.25	0.92 ± 0.24	0.040***	2.8	0.93 ± 0.25	0.93±0.25*	0.007	1.4				
IMT _{max}	1.05 ± 0.32	1.09 ± 0.30	0.042***	4.1	1.12 ± 0.32	1.13 ± 0.31	0.005	2.2				
LD _{mean}	6.18±0.75	6.23±0.76	0.045***	1.7	6.24±0.76	6.25±0.76*	* 0.014	0.3				

SD: Standard Deviation.

* $p_1 < 0.05$, ** $p_2 < 0.01$, *** $p_2 < 0.001$ for difference between readers

Variability between two experienced readers

15

5% 12% 83%

Common carotid artery

Common artery bulb Common femoral artery

No correction

Minor correction

Correction

Correction needed

Conclusion

The automated artery measurement method can replace the previous manual method

with

reduced inter- and intra-observer variability and fast process speed.

