
DYNAMIC PROGRAMMINGDYNAMIC PROGRAMMING

Boundary detection
Consider an image region of size N x M (see below).
Suppose we search a boundary located almost
horizontally in that region. Let us represent any possible
boundary as a polyline with N vertices

M

N

M

N

1 N(p ,...,p) P∈

Cost function

Suppose that the boundary we search for is associated
with high image intensity, high image gradient and a high
degree of continuity (i.e. the curve is smooth). One way
of finding the optimal boundary would then be to set up a
cost function to be minimized.

Cost function

The minimal cost could be found by exhaustive search, i.e.
by evaluating the total cost associated with all possible
polylines. The complexity of such procedure is O(NM):

It is clear that we need a more efficient procedure.

N

sum i
i=1

1 1 grad 1 2 int 1

i 1 grad i 2 int i 3 cont i-1 i

min C (P)= C(p)

where
C(p) -w C (p) - w C (p)
C(p) -w C (p) - w C (p) - w C (p , p) (i>1)

=
=

∑

Optimization by dynamic
programming

Dynamic programming (Bellman and Dreyfus 1962) is
based on what is referred to as Bellman’s principal of
optimality which states that ”the optimum path between
two given points is also optimum between any two points
lying on the path”.

 If path AB is optimum, then so is AC, no matter how C
will go further.

A

B
C

D

E

A

B
C

D

E

 Using dynamic programming it is possible to solve
optimisation problems when not all variables in the
evaluation function (here, cost function) are interrelated
simultaneously. Consider the problem:

 If nothing is known about h, the only technique that
guarantees a global maximum is exhaustive enumeration
of all combinations of discrete values of (x1,x2,x3,x4).

Optimization by dynamic
programming

i
1 2 3 4x

max h(x ,x ,x ,x)

 Suppose that:

 x1 only depends on x2 in h1. Maximize over x1 in h1 and
tabulate the best value of h1(x1, x2) for each x2:

Since the values of h2 and h3 do not depend on x1, they
need not to be considered at this point.

Optimization by dynamic
programming

1 1 2 2 2 3 3 3 4h() h (x ,x)+h (x ,x)+h (x ,x)⋅ =

1
1 2 1 1 2x

f (x) max h (x ,x)=

 Continue in this manner and eliminate x2 and x3 by
computing f2(x3) and f3(x4) as:

So that finally:

Optimization by dynamic
programming

[]

[]
2

3

2 3 1 2 2 2 3x

3 4 2 3 3 3 4x

f (x) max f (x) h (x ,x)

f (x) max f (x) h (x ,x)

= +

= +

i 4
3 4

x x
max h() max f (x)⋅ =

 Generalizing the example to N variables, where f0(x1)=0,

If each xi took on 20 discrete values, then to compute
fN(xN+1) one must evaluate the maximum for 20 different
combinations of xN and xN+1, so that the resultant
computational effort involves (N-1)202+20 such evaluations.
This is a striking improvement over exhaustive evaluation,
which would involve 20N evaluations of h.

Optimization by dynamic
programming

[]
n 1

i N

n 1 n n 2 n 1 n-1 n-1 nx

N 1 N
x x

f (x) max f (x) h (x ,x)

max h() max f (x)
−

− − −

−

= +

⋅ =

Minimizing the cost function by
dynamic programming

Let us now apply this procedure to our problem of
minimizing the cost function. If we already know the
solution for each of the pixels in column n-1, then we can
do: for each pixel in column N, try to connect it with
every pixel in column n-1 one by one, choose the best
path (and cost) for this pixel. In this way we can get the
best solution for each pixel in column n. If we already
know such solution for each of the pixels in column n-2,
in the similar way as above, we can get the best solution
for each pixel in column n-1.

Minimizing the cost function by
dynamic programming

We need to find best solutions to arrive each of the pixels
in column 2 first. To do that, we rewrite the cost function
in the form of a multistage process:

sum 1 grad 1 2 int 1

1 grad 2 2 int 2 3 cont 1 2

1 grad k 1 2 int k 1 3 cont k-2 k 1

1 grad k 2 int k 3 cont k-1 k

1 grad N 2 int N 3 cont N-1 N

C (P) = -w C (p) - w C (p)
-w C (p) - w C (p) - w C (p , p)
...
-w C (p) - w C (p) - w C (p , p)
-w C (p) - w C (p) - w C (p , p)
...
-w C (p) - w C (p) - w C (p , p

− − −

)

Dynamic programming algorithm
1 Create a cost accumulation matrix (CAM). Copy the first

column of the image into the CAM
2 Starting from the second column in the image, for each

point in the column find the optimal solution and store the
accumulated cost in the CAM

3 Repeat step 2 until you reach the rightmost column
4 From the node in the rightmost column of the CAM

associated with the lowest cost, trace back column-by-
column passing through the nodes associated with the
lowest accumulated cost. The trace defines the optimal
boundary

C1:

2 2 4 3 1
4 1 1 2 1
1 2 5 6 0
2 2 2 4 2

Simple case

sum i 1 i 2 i 1 i

1 5

1

2 i 1 i

C (p) C (p) C (p ,p)
(p ...,p P)

where :
C is presented in the matrix below, and
C (p ,p) 2 y

−

−

= +
∈

= ∆

Simple case

