MOMENTS




Definition

Given a 2D continuous function f(x,y), we define the
moment of order (p+q) by the relation:
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Centra moments

The central moments are defined as:

My = OOX- X)° (Y- V)F(X,Y)

M - m
1,0 and y — 0,1
0,0 m

where x =

m 0,0
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The centra moments are invariant under translation.




Scale change

Under scale change, X =a X, y' =a Yy, the moments of f(ax,
ay) change to:
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The normalized moments, defined as:
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are then invariant to size change.
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Rotation and reflexion

Under alinear coordinate transformation,
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It is possible to find certain polynomials of m, , that
remain unchanged under the transformation. For example,
some moments invariant with respect to rotation (that is,
a=d=cosg, b=- g=sinq) and reflexion (a=- d=cosq,
b=g=sinq) are given as follows.




For p+q=1:
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