Morphological operations

Mathematical morphology and binary operations

- Erode/Dilate
- Open/Close
- Hit-Miss
- Skeleton
- Distance transforms
- Shape features

Mathematical morphology and binary operations

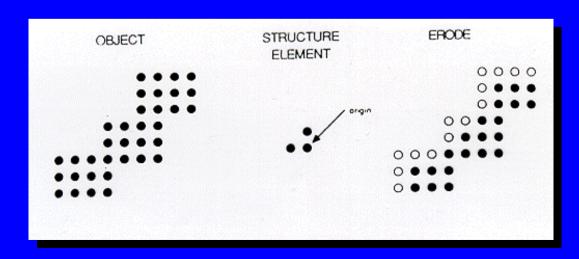
Based on set theory

Loosely: Add or remove pixels from a binary image according to certain rules depending on neighborhood patterns

Erosion

Let B_x denote the translation of B so that its origin is located at x. Then the erosion of X by B is defined as the set of all points x such that B_x is included in X, that is:

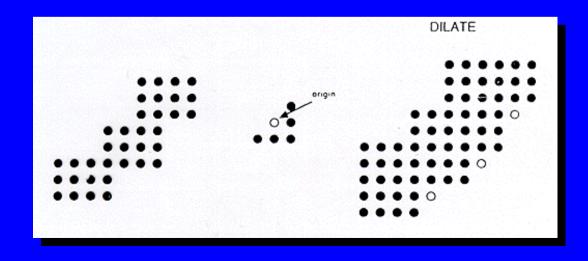
$$X e B @ \{x | B_x \subset X\}$$



Dilation

Similarly, the dilation of X by B is defined as the set of all points x such that B_x hits X, that is, they have a non-empty intersection:

$$X \oplus B @ \{x | B_x \cap X \neq \emptyset\}$$

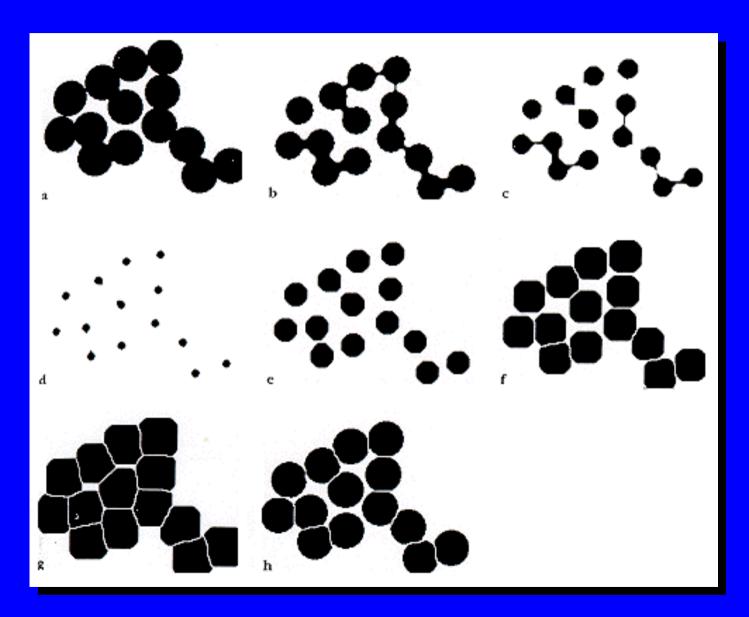


Open

An erosion operation followed by a dilation:

$$X_{B} = (X e B) \oplus B$$

Open: example

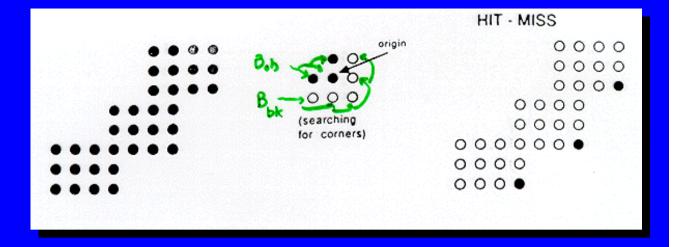


Close

A dilation operation followed by an erosion:

$$X^{B} = (X \oplus B) e B$$

Hit-Miss



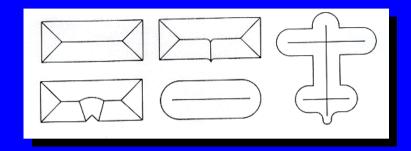
Corresponds to searching for a match or a specific configuration:

 B_{ob} and B_{bk} are the sets formed from pixels in B that should belong to the object and the background, respectively:

$$X \otimes B = (X \mathbf{e} B_{ob})/(X \oplus B_{bk})$$

where / means set difference

Skeletonization



Definition: The set of points whose distance from the nearest

boundary is locally maximum

Shape recovery: Take the union of circular discs centered on the

skeleton and having radii equal to the associated

contour distance

Application: Compact shape representation. Works best for

long and thin features

Alternative: Medial axis transform. Those points that are

equidistant from at least two boundary points

(Prairie fire)

Skeletonization

		0			1	1			1		0	
Phasel:West	0	1	1	0	1	1	0	1	1	0	1	1
		1	1		0				1		0	
		0			0			0			0	
Phase2: North	1	1	0	0	1	1		1		0	1	0
	1	1			1	1	1	1	1		1	
	1	1			0		1				0	
Phase3: East	1	1	0	1	1	0	1	1	0	1	1	0
		0		1	1		1				0	
		1	1	1	1		1	1	1		1	
Phase4:South	0	1	1	1	1	0		1		0	1	0
		0			0			0			0	

Skeletonization

The algorithm runs in four phases: west-north-east-south

Each of the four phases are associated with a set of hitmiss operators.

If the number of operators in the set is 3 (the three leftmost) the object will shrink to a skeleton. If the number is 4, it will shrink to a point.

Skeletonization: algorithm

- 1. Run phase 1 (west). For each pixel position in the input image, test the west hit-miss operators for a hit.
- 2. If any of the operators results in a hit, set the corresponding position in the output image to zero. Otherwise, set to one.
- 3. Proceed in the same manner with phase 2, 3 and 4. If there still remain pixel positions that can be set to zero by a hit, go to 1.
- 4. The skeleton (or point) is extracted

Distance metrics

a) Euclidian
$$d_e(x,y) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$

b) City block
$$d_{cb}(x,y) = |x_1-x_2| + |y_1-y_2|$$

c) Chessboard
$$d_{ch}(x,y)=max\{|x_1-x_2|,|y_1-y_2|\}$$

Distance transform

The distance transform uses a binary image as input and produces for each pixel position a value which is the distance from that pixel to the nearest background pixel.

Application areas:

- Fast morphological operations
- Skeletonization
- Computation of shape features (e.g. form factor)

Distance map using chessboard metrics algorithm

Phase 1: apply this filter from the upper left corner of the image:

If A>0: A=min(B+1, C+1)

C

Phase 2: apply this filter from the lower right corner of the image: If A>0: A=min(A,B+1, C+1)

A C

Distance map result

1	1	1	1	1	1		
1	2	2	1	2	2		
1	2	3					
1	2	3	1	1	1	1	1
1	2	3	1	2	2	2	2
			1	2	3	3	3
	1	1	1	2	3	4	4
1	2		1	2	3	4	5

1	1	1	1	1	1		
1	2	1	1	1	1		
1	2	1					
1	2	1	1	1	1	1	1
1	1	1	1	2	2	2	1
			1	2	3	2	1
	1	1	1	2	2	2	1
1	1		1	1	1	1	1

Phase 1 Phase 2

Shape features

Shape factor: $S = \frac{p^2}{4p A}$

A = Area

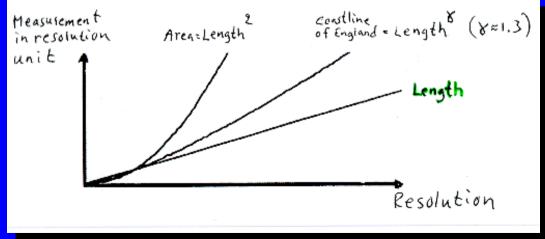
p = perimeter

S = 1 for a circle

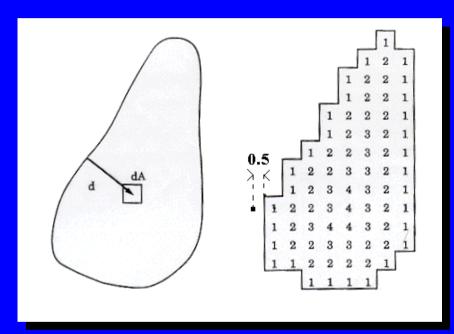
Great Britain

Area can be determined, what about perimeter?

Higher resolution: Perimeter $\rightarrow \infty$



Shape features



$$\overline{d} = \frac{1}{A} \iint_{A} d(x, y) dA \text{ (for a circle, } \overline{d} = \frac{r}{3})$$

$$FORM = \frac{1}{A} \iint_{A} d(x, y) dA \text{ (for a circle, } \overline{D} = \frac{r}{3})$$

$$FORM = \frac{1}{9p} \cdot \frac{A}{\overline{d}^2}$$
 (for a circle, $FORM = 1$)

$$\overline{d} = \frac{\sum_{A} \left[d(x, y) - \frac{1}{2} \right]}{A} = \frac{\sum_{A} d(x, y)}{A} - \frac{1}{2}$$

where A is the number of pixels in the object

$$\overline{d} = \frac{30 \cdot 1 + 31 \cdot 2 + 12 \cdot 3 + 4 \cdot 4}{77} - 0.5 \approx 1.37$$

$$FORM \approx \frac{1}{9\mathbf{p}} \cdot \frac{77}{(1.37)^2} \approx 1.45$$