
OPTIMAL THRESHOLDING

Assume that the original image contains 2 gray-scale components that represent the background and the object, respectively: $p(x) = P_1p_1(x) + P_2p_2(x)$

 $p_1(x) = Gauss(\sigma_1, \mu_1)$ $p_2(x) = Gauss(\sigma_2, \mu_2)$

 P_1 and P_2 represents the a priori probabilities for the background and the object, respectively

 $(P_1 + P_2 = 1)$

The probability to wrongly classify an object pixel as a background pixel is:

$$E_1(T) = \int_{-\infty}^{1} p_2(x) dx$$

The probability to wrongly classify a background pixel as an object pixel is: $E_2(T) = \int_{0}^{\infty} p_1(x) dx$

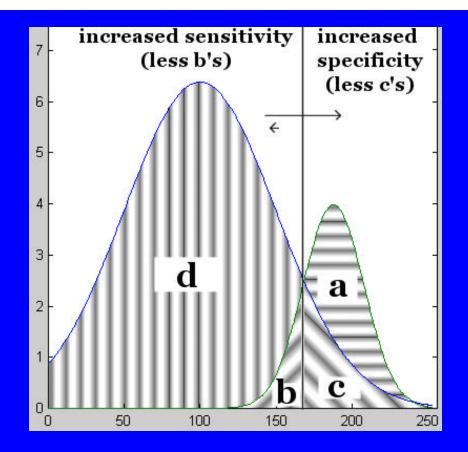
 $E(T) = P_2 \cdot E_1(T) + P_1 \cdot E_2(T)$

Differentiating E(t) with respect to T, and setting to 0, yields:

 $\mathbf{P}_1 \cdot \mathbf{p}_1(\mathbf{T}) = \mathbf{P}_2 \cdot \mathbf{p}_2(\mathbf{T})$

Taking the log of the expression, and after simplification, we obtain a 2nd degree equation:

$$AT^{2} + BT + C = 0 \begin{cases} A = \sigma_{1}^{2} - \sigma_{2}^{2} \\ B = 2(\mu_{1}\sigma_{2}^{2} - \mu_{2}\sigma_{1}^{2}) \\ C = \sigma_{1}^{2}\mu_{2}^{2} - \sigma_{2}^{2}\mu_{1}^{2} + \sigma_{1}^{2}\sigma_{2}^{2}\ln(\sigma_{1}P_{1}/\sigma_{2}P_{2})) \end{cases}$$


If the variances are equal $(\sigma_1^2 = \sigma_2^2 = \sigma^2)$, then we get a single solution for *T* (otherwise, we get 2 solutions):

$$T = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2}{\mu_1 - \mu_2} \ln(P_2/P_1)$$

If $P_1 = P_2$, then T is the mid-value of the mean values:

 $T = \frac{\mu_1 + \mu_2}{2}$

a=true positive (true object) b=false negative (false background) c=false positive (false object) d=true negative (true background) Sensitivity=a/(a+b) Specificity=d/(c+d)

Increased sensitivity: You will miss less true object pixels but the price you pay is more false object pixels. Good if it is dangerous to miss object pixels

Increased specificity: You will get less false object pixels but may miss true object pixels. Good if it is expensive to respond to false object pixels